×

1-supertransitive subfactors with index at most \(6\frac{1}{5}\). (English) Zbl 1330.46062

Summary: An irreducible \(\mathrm{II}_1\)-subfactor \(A\subset B\) is exactly 1-supertransitive if \(B\ominus A\) is reducible as an \(A\)-\(A\) bimodule. We classify exactly 1-supertransitive subfactors with index at most \(6\frac{1}{5}\), leaving aside the composite subfactors at index exactly 6 where there are severe difficulties. Previously, such subfactors were only known up to index \(3+\sqrt 5\approx 5.23\). Our work is a significant extension, and also shows that index 6 is not an insurmountable barrier.
There are exactly three such subfactors with index in \((3+\sqrt 5,6\frac{1}{5}]\), all with index \(3+2\sqrt 2\). One of these comes from \(\mathrm{SO}(3)_q\) at a root of unity, while the other two appear to be closely related, and are ‘braided up to a sign’.
This is the published version of arXiv:1310.8566.

MSC:

46L37 Subfactors and their classification

References:

[1] Asaeda, M., Haagerup, U.: Exotic subfactors of finite depth with Jones indices \[{(5+\sqrt{13})/2} \](5+\sqrt{13})/2 and \[{(5+\sqrt{17})/2} \](5+\sqrt{17})/2. Commun. Math. Phys. 202(1), 1-63 (1999). arxiv:math.OA/9803044; doi:10.1007/s002200050574 · Zbl 1014.46042
[2] Alexander, J.W.: A lemma on systems of knotted curves. Proc. Nat. Acad. Sci. USA 9(3), 93-95 (1923). http://www.jstor.org/stable/84367 · JFM 49.0408.03
[3] Bisch, D, Haagerup, U.: Composition of subfactors: new examples of infinite depth subfactors. Ann. Sci. École Norm. Sup. (4) 29(3), 329-383 (1996). http://www.numdam.org/item?id=ASENS_1996_4_29_3_329_0 · Zbl 0853.46062
[4] Bisch, D., Jones, V.F.R.: Singly generated planar algebras of small dimension. Duke Math. J. 101(1), 41-75 (2000). MR1733737 · Zbl 1075.46053
[5] Bisch D., Jones V.: Singly generated planar algebras of small dimension. II. Adv. Math. 175(2), 297-318 (2003). doi:10.1016/S0001-8708(02)00060-9 · Zbl 1041.46048 · doi:10.1016/S0001-8708(02)00060-9
[6] Bisch, D., Jones, V.F.R., Liu, Z.: Singly generated planar algebras of small dimension, part III (2013, in preparation) · Zbl 1370.46036
[7] Bhattacharyya, B., Landau, Z.: Intermediate standard invariants and intermediate planar algebras. (2010). http://www.eecs.berkeley.edu/ landau/publications.htm
[8] Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. Acta Math. 209(1), 29-82 (2012). arxiv:0909.4099; doi:10.1007/s11511-012-0081-7 · Zbl 1270.46058
[9] Bisch, D., Nicoara, R., Popa, S.: Continuous families of hyperfinite subfactors with the same standard invariant. Internat. J. Math. 18(3), 255-267 (2007). arxiv:math.OA/0604460; doi:10.1142/S0129167X07004011 · Zbl 1120.46047
[10] Bigelow, S., Penneys, D.: Principal graph stability and the jellyfish algorithm. Math. Ann. 358(1-2), 1-24 (2014). doi:10.1007/s00208-013-0941-2; arxiv:1208.1564 · Zbl 1302.46049
[11] Brothier, A., Vaes, S.: Families of hyperfinite subfactors with the same standard invariant and prescribed fundamental group (2013). arxiv:1309.5354 · Zbl 1342.46059
[12] Etingof, P., Gelaki, S.: Semisimple Hopf algebras of dimension pq are trivial. J. Algebra 210(2), 664-669 (1998). doi:10.1006/jabr.1998.7568; arxiv:math/9801129 · Zbl 0919.16028
[13] Evans, D.E., Gannon, T.: Near-group fusion categories and their doubles. Adv. Math. 255, 586-640 (2014). doi:10.1016/j.aim.2013.12.014; arxiv:1208.1500 · Zbl 1304.18017
[14] Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. (N.S.) 12(2),239-246 (1985). MR776477 · Zbl 0572.57002
[15] Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras. In: Mathematical Sciences Research Institute Publications, vol. 14. Springer, New York (1989). MR999799 · Zbl 0698.46050
[16] Goldman, M.: On subfactors of factors of type II1. Michigan Math. J. 6, 167-172 (1959). MR0107827 · Zbl 0121.10002
[17] Grossman, P., Snyder, N.: The Brauer-Picard group of the Asaeda-Haagerup fusion categories. Trans. Am. Math. Soc. (2012, to appear). arxiv:1202.4396 · Zbl 1354.46057
[18] Grossman, P., Snyder, N.: Quantum subgroups of the Haagerup fusion categories. Commun. Math. Phys. 311(3), 617-643 (2012). arxiv:1102.2631; doi:10.1007/s00220-012-1427-x · Zbl 1250.46042
[19] Haagerup, U.: Principal graphs of subfactors in the index range \[{4 \, < \, [M \, : \, N] \, < \, 3 \,+ \,\sqrt2}4\]<[M:N]<3+\sqrt{2}. In: Subfactors (Kyuzeso, 1993), pp. 1-38. World Sci. Publ., River Edge (1994). MR1317352 · Zbl 0933.46058
[20] Izumi, M., Jones, V.F.R., Morrison, S., Snyder, N.: Subfactors of index less than 5, Part 3: quadruple points. Commun. Math. Phys. 316(2), 531-554 (2012). arxiv:1109.3190; doi:10.1007/s00220-012-1472-5 · Zbl 1272.46051
[21] Izumi, M., Morrison, S., Penneys, D.: Fusion categories between \[{\mathcal{C} \boxtimes \mathcal{D}}C\]⊠D and \[{\mathcal{C} *\mathcal{D}}C\]∗D (2013). arxiv:1308.5723
[22] Izumi, M., Penneys, D., Peters, E., Snyder, N.: Subfactors of index exactly 5. arxiv:1406.2389 · Zbl 1328.46048
[23] Izumi M.: Application of fusion rules to classification of subfactors. Publ. Res. Inst. Math. Sci. 27(6), 953-994 (1991). doi:10.2977/prims/1195169007 · Zbl 0765.46048 · doi:10.2977/prims/1195169007
[24] Izumi M.: The structure of sectors associated with Longo-Rehren inclusions. II. Examples. Rev. Math. Phys. 13(5), 603-674 (2001). doi:10.1142/S0129055X01000818 · Zbl 1033.46506 · doi:10.1142/S0129055X01000818
[25] Jones V.F.R., Morrison S., Snyder N.: The classification of subfactors of index at most 5. Bull. Am. Math. Soc. 51, 277-327 (2014). arxiv:1304.6141 · Zbl 1301.46039
[26] Jones V.F.R.: Index for subfactors. Invent. Math. 72(1), 1-25 (1983). doi:10.1007/BF01389127 · Zbl 0508.46040 · doi:10.1007/BF01389127
[27] Jones, V.F.R.: Planar algebras, I (1999). arxiv:math.QA/9909027 · Zbl 1328.46049
[28] Jones, V.F.R.: The planar algebra of a bipartite graph. In: Knots in Hellas ’98 (Delphi). Ser. Knots Everything, vol. 24, pp. 94-117. World Sci. Publ., River Edge (2000). MR1865703 · Zbl 1021.46047
[29] Jones, V.F.R.: Quadratic tangles in planar algebras. Duke Math. J. 161(12), 2257-2295 (2012). arxiv:1007.1158; doi:10.1215/00127094-1723608 · Zbl 1257.46033
[30] Jones, V.F.R., Penneys, D.: The embedding theorem for finite depth subfactor planar algebras. Quantum Topol. 2(3), 301-337 (2011). arxiv:1007.3173; doi:10.4171/QT/23 · Zbl 1230.46055
[31] Liu, Z.: Singly generated planar algebras with small dimensions, part IV (2014, In preparation)
[32] Liu, Z.: Composed inclusions of A3 and A4 subfactors (2013). arxiv:1308.5691
[33] Liu, Z.: Planar algebras of small thickness (2013). arxiv:1308.5656 · Zbl 0853.46059
[34] Morrison, S., Penneys, D.: Constructing spoke subfactors using the jellyfish algorithm. Trans. Am. Math. Soc. (2012). arxiv:1208.3637 · Zbl 1360.46054
[35] Morrison, S., Peters, E.: The little desert? Some subfactors with index in the interval \[{(5,3+\sqrt{5})} \](5,3+\sqrt{5}) (2012). arxiv:1205.2742
[36] Morrison, S., Penneys, D., Peters, E., Snyder, N.: Subfactors of index less than 5, Part 2: triple points. Internat. J. Math. 23(3), 1250016, 33 (2012). arxiv:1007.2240; doi:10.1142/S0129167X11007586 · Zbl 1246.46054
[37] Morrison, S., Snyder, N.: Subfactors of index less than 5, part 1: the principal graph odometer. Commun. Math. Phys. 312(1), 1-35 (2012). arxiv:1007.1730; doi:10.1007/s00220-012-1426-y · Zbl 1246.46055
[38] Müger, M.: From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1-2), 81-157 (2003). doi:10.1016/S0022-4049(02)00247-5: arxiv:math.CT/0111204 · Zbl 1033.18002
[39] Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, vol. 2. In: London Math. Soc. Lecture Note Ser., vol. 136, pp. 119-172. Cambridge Univ. Press, Cambridge (1988). MR996454 · Zbl 0696.46048
[40] Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177-206 (2003). arxiv:math/0111139 · Zbl 1044.18004
[41] Penneys, D.: Chirality and principal graph obstructions (2013). arxiv:1307.5890 · Zbl 1326.46049
[42] Popa S.: Classification of subfactors: the reduction to commuting squares. Invent. Math. 101(1), 19-43 (1990). doi:10.1007/BF01231494 · Zbl 0757.46054 · doi:10.1007/BF01231494
[43] Popa S.: Markov traces on universal Jones algebras and subfactors of finite index. Invent. Math. 111(2), 375-405 (1993). doi:10.1007/BF01231293 · Zbl 0787.46047 · doi:10.1007/BF01231293
[44] Popa S.: Classification of amenable subfactors of type II. Acta Math. 172(2), 163-255 (1994). doi:10.1007/BF02392646 · Zbl 0853.46059 · doi:10.1007/BF02392646
[45] Popa S.: An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(3), 427-445 (1995). doi:10.1007/BF01241137 · Zbl 0831.46069 · doi:10.1007/BF01241137
[46] Penneys, D., Peters, E.: Calculating two-strand jellyfish relations (2013). arxiv:1308.5197 · Zbl 1339.46060
[47] Penneys, D., Tener, J.: Classification of subfactors of index less than 5, part 4: vines. Int. J. Math. 23(3), 1250017 (2012). arxiv:1010.3797; doi:10.1142/S0129167X11007641 · Zbl 1246.46056
[48] Szymański W.: Finite index subfactors and Hopf algebra crossed products. Proc. Am. Math. Soc. 120(2), 519-528 (1994). doi:10.2307/2159890 · Zbl 0802.46076 · doi:10.2307/2159890
[49] Wenzl, H.: Quantum groups and subfactors of type B, C, and D. Commun. Math. Phys. 133(2), 383-432 (1990). MR1090432 · Zbl 0744.17021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.