×

The embedding theorem for finite depth subfactor planar algebras. (English) Zbl 1230.46055

Summary: We define a canonical planar \(\ast\)-algebra from a strongly Markov inclusion of finite von Neumann algebras. In the case of a connected unital inclusion of finite dimensional \(C^\ast\)-algebras with the Markov trace, we show that this planar algebra is isomorphic to the bipartite graph planar algebra of the Bratteli diagram of the inclusion. Finally, we show that a finite depth subfactor planar algebra is a planar subalgebra of the bipartite graph planar algebra of its principal graph.

MSC:

46L37 Subfactors and their classification
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
57M20 Two-dimensional complexes (manifolds) (MSC2010)

References:

[1] M. Baillet,Y. Denizeau, and J.-F. Havet, Indice d’une espérance conditionelle. Compositio Math. 66 (1988), 199-236. · Zbl 0657.46041
[2] S. Bigelow, S. Morrison, E. Peters, and N. Snyder, Constructing the extended Haagerup planar algebra. Preprit 2009. Acta Math. · Zbl 1270.46058 · doi:10.1007/s11511-012-0081-7
[3] D. Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In Fillmore, Peter A. (ed.) et al., Operator algebras and their appli- cations ( Waterloo, ON, 1994/1995 ), 13-63. Amer. Math. Soc., Providence, RI, 1997. · Zbl 0894.46046
[4] M. Burns, Subfactors, planar algebras, and rotations. University of California Berkeley, 2003. Ph.D. Thesis. · Zbl 1283.46040
[5] D. E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras. Clarendon Press, Oxford, 1998. · Zbl 0924.46054
[6] F. M. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter graphs and towers of algebras. Springer Verlag, New York, 1989. · Zbl 0698.46050
[7] P. Jolissaint, Index for pairs of finite von Neumann algebras. Pacific J. Math. 146 (1990), 43-70. · Zbl 0663.46052 · doi:10.2140/pjm.1990.146.43
[8] V. F. R. Jones, Index for subfactors. Invent. Math. , 72 (1993), 1-25. · Zbl 0508.46040 · doi:10.1007/BF01389127
[9] V. F. R. Jones, Planar algebras I. Preprint 1999. · Zbl 1328.46049
[10] V. F. R. Jones, The planar algebra of a bipartite graph. In C. McA. Gordon (ed.) et al., Knots in Hellas ’98 (Delphi), 94-117. World Sci. Publ., River Edge, NJ, 2000. · Zbl 1021.46047
[11] V. F. R. Jones, Quadratic tangles in planar algebras. Prerpint 2010. · Zbl 1257.46033 · doi:10.1215/00127094-1723608
[12] V. F.R. Jones and V. S. Sunder, Introduction to subfactors. Cambridge University Press, Cambridge, 1997. · Zbl 0903.46062
[13] V. Kodiyalam and V. S. Sunder, On Jones’ planar algebras. J. Knot Theory Ramifications 13 (2004), 219-247. · Zbl 1054.46045 · doi:10.1142/S021821650400310X
[14] S. Morrison, E. Peters, and N. Snyder, Skein theory for the D2n planar algebras. J. Pure Appl. Alg. 214 (2010), 117-139. · Zbl 1191.46051 · doi:10.1016/j.jpaa.2009.04.010
[15] S. Morrison and K. Walker, The graph planar algebra embedding theorem, Preprint 2010.
[16] D. Penneys, A cyclic approach to the annular Temperley-Lieb category, Preprint 2009. · Zbl 1256.46042 · doi:10.1142/S0218216511010012
[17] E. Peters, A planar algebra construction of the Haagerup subfactor. Internat. J. Math., 21 (2010), 987-1045. · Zbl 1203.46039 · doi:10.1142/S0129167X10006380
[18] M. Pimsner and S. Popa, Entropy and index for subfactors. Ann. Sci. École Norm. Sup. (4) 19 (1986), 57-106. · Zbl 0646.46057
[19] M. Pimsner and S. Popa, Iterating the basic construction. Trans. Amer. Math. Soc. 310 (1988), 127-133. · Zbl 0706.46047 · doi:10.2307/2001113
[20] S. Popa, Classification of subfactors: the reduction to commuting squares. Invent. Math. 101 (1990), 19-43. · Zbl 0757.46054 · doi:10.1007/BF01231494
[21] S. Popa, Classification of amenable subfactors of type II. Acta Math. 172 (1994), 163-255. · Zbl 0853.46059 · doi:10.1007/BF02392646
[22] M. Takesaki, Theory of operator algebras I. Volume 124 of the Encyclopaedia of Math- ematical Sciences. Springer-Verlag, Berlin, 2002. · Zbl 0436.46043
[23] Y. Watatani, Index for C -subalgebras. Amer. Math. Soc., Providence, RI, 1990. · Zbl 0697.46024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.