×

Quantum Fourier transforms and the complexity of link invariants for quantum doubles of finite groups. (English) Zbl 1308.81061

Summary: Knot and link invariants naturally arise from any braided Hopf algebra. We consider the computational complexity of the invariants arising from an elementary family of finite-dimensional Hopf algebras: quantum doubles of finite groups [denoted \(\mathsf D(G)\), for a group \(G\)]. These induce a rich family of knot invariants and, additionally, are directly related to topological quantum computation.
Regarding algorithms for these invariants, we develop quantum circuits for the quantum Fourier transform over \(\mathsf D(G)\); in general, we show that when one can uniformly and efficiently carry out the quantum Fourier transform over the centralizers \(Z(g)\) of the elements of \(G\), one can efficiently carry out the quantum Fourier transform over \(\mathsf D(G)\). We apply these results to the symmetric groups to yield efficient circuits for the quantum Fourier transform over \(\mathsf D(S_n)\). With such a Fourier transform, it is straightforward to obtain additive approximation algorithms for the related link invariant.
As for hardness results, first we note that in contrast to those concerning the Jones polynomial – where the images of the braid group representations are dense in the unitary group – the images of the representations arising from \(\mathsf D(G)\) are finite. This important difference appears to be directly reflected in the complexity of these invariants. While additively approximating “dense” invariants is \(\mathsf{BQP}\)-complete and multiplicatively approximating them is \(\#\mathsf P\)-complete, we show that certain \(\mathsf D(G)\) invariants (such as \(\mathsf D(A_n)\) invariants) are \(\mathsf{BPP}\)-hard to additively approximate, \(\mathsf{SBP}\)-hard to multiplicatively approximate, and \(\#\mathsf P\)-hard to exactly evaluate. To show this, we prove that, for groups (such as \(A_n\)) which satisfy certain properties, the probability of success of any randomized computation can be approximated to within any \(\varepsilon\) by the plat closure.
Finally, we make partial progress on the question of simulating anyonic computation in groups uniformly as a function of the group size. In this direction, we provide efficient quantum circuits for the Clebsch-Gordan transform over \(\mathsf D(G)\) for “fluxon” irreps, i.e., irreps of \(\mathsf D(G)\) characterized by a conjugacy class of \(G\). For general irreps, i.e., those which are associated with a conjugacy class of \(G\) and an irrep of a centralizer, we present an efficient implementation under certain conditions, such as when there is an efficient Clebsch-Gordan transform over the centralizers (this could be a hard problem for some groups). We remark that this also provides a simulation of certain anyonic models of quantum computation, even in circumstances where the group may have size exponential in the size of the circuit.

MSC:

81P68 Quantum computation
16T05 Hopf algebras and their applications
57M25 Knots and links in the \(3\)-sphere (MSC2010)
65T50 Numerical methods for discrete and fast Fourier transforms
68Q12 Quantum algorithms and complexity in the theory of computing

References:

[1] Aaronson, S.: Quantum computing, postselection, and probabilistic polynomial-time. In: Proceedings of the Royal Society A, p. 0412187 (2005) · Zbl 1337.81032
[2] Aharonov, D., Arad, I.: The BQP-hardness of approximating the Jones polynomial. Technical Report quant-ph/0605181v1, Quant-ph e-print archive (2006). http://arxiv.org/abs/quant-ph/0605181 · Zbl 1448.68244
[3] Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, STOC ’06, pp. 427-436, New York, NY, USA (2006). ACM. doi:10.1145/1132516.1132579 · Zbl 1301.68129
[4] Alagic, G., Jordan, S.P., König, R., Reichardt, B.W.: Estimating Turaev-Viro three-manifold invariants is universal for quantum computation. Phys. Rev. A 82, 040302 (2010). doi:10.1103/PhysRevA.82.040302
[5] Alexander J.W.: A lemma on systems of knotted curves. Proc. Natl. Acad. Sci. (USA) 9, 93-95 (1923) · JFM 49.0408.03 · doi:10.1073/pnas.9.3.93
[6] Mix Barrington D.A., Straubing H., Thérien D.: Non-uniform automata over groups. Inform. Comput. 89(2), 109-132 (1990). doi:10.1016/0890-5401(90)90007-5 · Zbl 0727.68070 · doi:10.1016/0890-5401(90)90007-5
[7] Beals, R.: Quantum computation of Fourier transforms over symmetric groups. In: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, STOC ’97, pp. 48-53, New York, NY, USA (1997). ACM. ISBN 0-89791-888-6. doi:10.1145/258533.258548 · Zbl 0962.68070
[8] Birman J.S.: On the stable equivalence of plat representations of knots and links. Can. J. Math. 28, 264-290 (1976). doi:10.4153/CJM-1976-030-1 · Zbl 0339.55005 · doi:10.4153/CJM-1976-030-1
[9] Birman, J.S., Menasco, W.W.: Studying links via closed braids. i. a finiteness theorem. Pacific J. Math. 154(1), 17-36 (1992). http://projecteuclid.org/euclid.pjm/1102635729 · Zbl 0724.57001
[10] Böhler, E., Glaßer, C., Meister, D.: Error-bounded probabilistic computations between MA and AM. In: Rovan, B., Vojtás, P. (eds.) Mathematical Foundations of Computer Science 2003, 28th International Symposium (MFCS 2003), volume 2747 of Lecture Notes in Computer Science, pp. 249-258. Springer, Berlin (2003) · Zbl 1124.68366
[11] Bordewich M., Freedman M., Lovász L., Welsh D.: Approximate counting and quantum computation. Comb. Prob. Comput. 14(5-6), 737-754 (2005). doi:10.1017/S0963548305007005 · Zbl 1089.68040 · doi:10.1017/S0963548305007005
[12] Curtis C.W., Reiner I.: Representation Theory of Finite Groups and Associative Algebras. Ams Chelsea Publishing. AMS Chelsea Pub., New York (1962) · Zbl 0131.25601
[13] Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi hope algebras, group cohomology and orbifold models. Nuclear Phys. B Proc. Suppl. 18(2), 60-72 (1991). ISSN 0920-5632. doi:10.1016/0920-5632(91)90123-V. http://www.sciencedirect.com/science/article/pii/092056329190123V · Zbl 0957.81670
[14] Etingof, P., Rowell, E., Witherspoon, S.: Braid group representations from twisted quantum doubles of finite groups. Pac. J. Math. 234(1), 33-41 (2007). http://arxiv.org/abs/math/0703274 · Zbl 1207.16038
[15] Franko J.M., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15(413), 595-615 (2006). doi:10.1142/S0218216506004580 ISSN 1793-6527 · Zbl 1097.20034 · doi:10.1142/S0218216506004580
[16] Freedman M.H., Kitaev A., Wang Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587 (2002). doi:10.1007/s002200200635 · Zbl 1014.81006 · doi:10.1007/s002200200635
[17] Freedman M.H., Larsen M., Wang Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605-622 (2002). doi:10.1007/s002200200645 · Zbl 1012.81007 · doi:10.1007/s002200200645
[18] Freedman M.H., Kitaev A., Larsen M.J., Wang Z.: Topological quantum computation. Bull. Am. Math. Soc. (NS) 40(1), 31-38 (2003). doi:10.1090/S0273-0979-02-00964-3 · Zbl 1019.81008 · doi:10.1090/S0273-0979-02-00964-3
[19] Garnerone S., Marzuoli A., Rasetti M.: Quantum geometry and quantum algorithms. J. Phys. A Math. Theor. 40(12), 3047 (2007). doi:10.1088/1751-8113/40/12/S10 · Zbl 1110.81157 · doi:10.1088/1751-8113/40/12/S10
[20] Gould M.D.: Quantum double finite groups algebras and their representations. Bull. Austr. Math. Soc. 48, 275-301 (1993) · Zbl 0806.20014 · doi:10.1017/S0004972700015707
[21] Hastings M., Nayak C., Wang Z.: Metaplectic anyons, majorana zero modes and their applications. Phys. Rev. B 87, 165421 (2013). doi:10.1103/PhysRevB.87.165421 · doi:10.1103/PhysRevB.87.165421
[22] Hastings M., Nayak C., Wang Z.: On metaplectic modular categories and their applications. Commun. Math. Phys. 330, 45-68 (2014). doi:10.1007/s0020-014-2044-7 · Zbl 1305.81105 · doi:10.1007/s0020-014-2044-7
[23] Johnson D.: Homomorphs of knot groups. Proc. Am. Math. Soc. 78(1), 135-138 (1980) · Zbl 0435.57003 · doi:10.1090/S0002-9939-1980-0548101-9
[24] Kassel C.: Quantum Groups, Volume 155 of Graduate Texts in Mathematics. Springer, New York (1995) · Zbl 0808.17003
[25] Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2-30 (2003). doi:10.1016/S0003-4916(02)00018-0 · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[26] Koenig, R., Kuperberg, G., Reichardt, B.: Quantum computation with Turaev-Viro codes. Ann. Phys. 325(12), 2707-2749 (2010). ISSN 0003-4916. doi:10.1016/j.aop.2010.08.001. http://www.sciencedirect.com/science/article/pii/S0003491610001375 · Zbl 1206.81033
[27] Kuperberg, G.: How hard is it to approximate the Jones polynomial? Technical Report http://arxiv.org/abs/0908.0512v1, Quant-ph e-print archive (2009). http://arxiv.org/abs/0908.0512 · Zbl 1337.68109
[28] Majid, S.: A Quantum Groups Primer, Volume 292 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2002). doi:10.1017/CBO9780511549892 · Zbl 1037.17014
[29] Markov A.A.: Uber die freie Aquivalenz geschlosserner Zopfe. Recueil Mathematique Moscou 1, 73-78 (1935) · Zbl 0014.04202
[30] Maurer W.D., Rhodes John L.: A property of finite non-Abelian simple groups. Proc. Am. Math. Soc. 16, 552-554 (1965) · Zbl 0132.26903 · doi:10.1090/S0002-9939-1965-0175971-0
[31] Mochon C.: Anyons from non-solvable finite groups are sufficient for universal quantum computation. Phys. Rev. A 67, 022315 (2003). doi:10.1103/PhysRevA.67.022315 · doi:10.1103/PhysRevA.67.022315
[32] Mochon C.: Anyon computers with smaller groups. Phys. Rev. A 69, 032306 (2004). doi:10.1103/PhysRevA.69.032306 · doi:10.1103/PhysRevA.69.032306
[33] Walter Ogburn, R., Preskill, J.: Topological quantum computation. In: QCQC, pp. 341-356 (1998). doi:10.1007/3-540-49208-9_31 · Zbl 0960.81009
[34] Pachos, J.K.: Introduction to Topological Quantum Computation. Cambridge University Press, UK (2012). ISBN 9781107005044. http://books.google.com/books?id=XDciVh6bAE0C · Zbl 1247.81003
[35] Preskill, J.: Topological quantum computation. Chapter 9 of Lecture Notes on Quantum Computation (2004). http://www.theory.caltech.edu/ preskill/ph219/ · Zbl 0960.81009
[36] Rowell, E.: Two paradigms for topological quantum computation. Advances in Quantum Computation: Representation Theory, Quantum Field Theory, Category Theory, Mathematical Physics, and Quantum Information Theory, September 20-23, 2007, University of Texas at Tyler. In: Mahdavi, K., Koslover, D. (eds.) Contemporary mathematics—American Mathematical Society. American Mathematical Society, USA (2009) · Zbl 1171.81344
[37] Rowell E.C., Wang Z.: Localization of unitary braid group representations. Commun. Math. Phys. 311(3), 595-615 (2012). doi:10.1007/s00220-011-1386-7 ISSN 0010-3616 · Zbl 1245.81023 · doi:10.1007/s00220-011-1386-7
[38] Serre J.P.: Linear representations of finite groups, volume 42 of Graduate texts in mathematics. Springer, Berlin (1977) · Zbl 0355.20006 · doi:10.1007/978-1-4684-9458-7
[39] Tsohantjis I., Gould M.D.: Quantum double finite group algebras and link polynomials. Bull. Austr. Math. Soc. 49, 177-204 (1994) · Zbl 0814.57005 · doi:10.1017/S0004972700016270
[40] Wocjan P., Yard J.: The Jones polynomial: quantum algorithms and applications in quantum complexity theory. Quantum Inform. Comput. 8(1-2), 147-180 (2008) · Zbl 1153.81477
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.