×

Character varieties with Zariski closures of \(\mathrm{GL}_n\)-conjugacy classes at punctures. (English) Zbl 1400.14122

To define the character varieties in the title of this paper, one needs to fix the following data: a compact Riemann surface \(\Sigma\) of genus \(g\); a set \(S = \{a_1,\ldots,a_k\} \subset \Sigma\); a base point of \(\Sigma\setminus S\) and loops \(\gamma_i\in \pi_1(\Sigma\setminus S)\) for each puncture \(a_i\); a \(k\)-tuple \(\mathcal{C} = (C_1,\ldots,C_k)\) of conjugacy classes in GL\(_n(\mathbb{C})\). Then one can consider the variety \(\mathcal{U}_{\overline{\mathbb{C}}}\) of homomorphisms \(\rho: \pi_1(\Sigma\setminus S) \to\) GL\(_n(\mathbb{C})\) such that \(\rho(\gamma_i) \in \overline{C_i}\) for each \(i\) (it is in this sense that one puts the closure of the conjugacy class \(C_i\) at the puncture \(a_i\)). Then the character variety is the GIT-quotient \(\mathcal{M}_{\overline{\mathcal{C}}}:=\mathcal{U}_{\overline{\mathcal{C}}}//\)GL\(_n(\mathbb{C})\).
The author proves some basic properties of these character varieties under the assumption that \(\mathcal{C}\) is generic in a suitable sense; in particular it is shown that the quotient map \(\mathcal{U}_{\overline{\mathcal{C}}} \to \mathcal{M}_{\overline{\mathcal{C}}}\) is a principal PGL\(_n\)-bundle in the étale topology (so that the PGL\(_n\)-orbits in \(\mathcal{U}_{\overline{\mathcal{C}}}\) are all closed of the same dimension), and there is a dimension formula for \(\mathcal{M}_{\overline{\mathcal{C}}}\). Much of the work can be done by reducing to the case where the tuple \(\mathcal{C}\) consists of semisimple conjugacy classes, which has been previously studied by the same author T. Hausel, E. Letellier and F. Rodriguez-Villegas [T. Hausel et al., Adv. Math. 234, 85–128 (2013; Zbl 1273.14101)].
Once the basic properties have been worked out, the paper proceeds to consider the mixed Hodge polynomial \(IH_c(\mathcal{M}_{\overline{\mathcal{C}}};x,y,t)\) for the intersection cohomology of the character variety, with a conjecture that this polynomial depends only on \(xy\) and \(t\). One of the main results of the paper shows that the conjecture is true if \(t\) is specialized to \(-1\). There are several other results concerning the intersection cohomology of character varieties, many of which work over the algebraic closure of a finite field as well as over \(\mathbb{C}\).

MSC:

14L24 Geometric invariant theory
20C33 Representations of finite groups of Lie type

Citations:

Zbl 1273.14101

References:

[1] Fu, B.: Symplectic resolutions for nilpotent orbits. Invent. Math. 151, 167-186 (2003) · Zbl 1072.14058 · doi:10.1007/s00222-002-0260-9
[2] Bardsley, P., Richardson, R.W.: Etale slices for algebraic transformation groups in characteristic \[p\] p. Proc. Lond. Math. Soc. 51, 295-317 (1985) · Zbl 0604.14037 · doi:10.1112/plms/s3-51.2.295
[3] Boden, H., Yokogawa, K.: Moduli spaces of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves. I. Int. J. Math. 7(5), 573-598 (1996) · Zbl 0883.14012 · doi:10.1142/S0129167X96000311
[4] Bohro, W. and MacPherson, R.: Partial resolutions of nilpotent varieties. In: Analysis and Topology on Singular Spaces, II, III (Luminy, 1981), Astérisque, vol. 101, pp. 23-74. (1983) · Zbl 0371.20039
[5] Chaudouard, P.-H., Laumon, G.: Sur le comptage des fibrés de Hitchin. arXiv:1307.7273 · Zbl 1401.14059
[6] Crawley-Boevey, W.: On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero. Duke Math. J. 118(2), 339-352 (2003) · Zbl 1046.15013 · doi:10.1215/S0012-7094-03-11825-6
[7] Crawley-Boevey, W.: Indecomposable parabolic bundles and the existence of matrices in prescribed conjugacy class closures with product equal to the identity. Publ. Math. Inst. Hautes études Sci. 100, 171-207 (2004) · Zbl 1065.14040 · doi:10.1007/s10240-004-0025-7
[8] Crawley-Boevey, W., Van den Bergh, M.: Absolutely indecomposable representations and Kac-Moody Lie algebras. With an appendix by Hiraku Nakajima. Invent. Math. 155(3), 537-559 (2004) · Zbl 1065.16009 · doi:10.1007/s00222-003-0329-0
[9] de Cataldo, M., Hausel, T., Migliorini, L.: Topology of Hitchin systems and Hodge theory of character varieties: the case \[A_1\] A1. Ann. Math. 175, 1329-1407 (2012) · Zbl 1375.14047 · doi:10.4007/annals.2012.175.3.7
[10] Deligne, P.: Théorie de Hodge II. Inst. Hautes Etudes Sci. Publ. Math. 40, 5-47 (1971) · Zbl 0219.14007 · doi:10.1007/BF02684692
[11] Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. Math. 103(2), 103-161 (1976) · Zbl 0336.20029 · doi:10.2307/1971021
[12] Etingof, P., Oblomkov, A., Rains, E.: Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces. Adv. Math. 212, 749-796 (2007) · Zbl 1118.14003 · doi:10.1016/j.aim.2006.11.008
[13] Foth, P.: Geometry of moduli spaces of flat bundles on punctured surfaces. Int. J. Math. 9, 63-73 (1998) · Zbl 0931.14001 · doi:10.1142/S0129167X9800004X
[14] García-Prada, O. Gothen, P.B., Munõz, V.: Betti numbers of the moduli space of rank 3 parabolic Higgs bundles. Mem. Am. Math. Soc. 187(879), viii+80 pp (2007). · Zbl 1132.14031
[15] García-Prada, O. Heinloth, J., Schmitt, A.: On the motives of moduli of chains and Higgs bundles. arXiv:1104.5558 (to appear in J. Eur. Math. Soc.) · Zbl 1316.14060
[16] Garsia, A.M., Haiman, M.: A remarkable q, t-Catalan sequence and q-Lagrange inversion. J. Algebraic Comb. 5(3), 191-244 (1996) · Zbl 0853.05008 · doi:10.1023/A:1022476211638
[17] Gothen, P.B.: The Betti numbers of the moduli space of rank 3 Higgs bundles. Int. J. Math. 5, 861-875 (1994) · Zbl 0860.14030 · doi:10.1142/S0129167X94000449
[18] Göttsche, L., Soergel, W.: Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math. Ann. 296, 235-245 (1993) · Zbl 0789.14002 · doi:10.1007/BF01445104
[19] Hausel, T.: Kac conjecture from Nakajima’s quiver varieties. Invent. Math. 181, 21-37 (2010) · Zbl 1198.16016 · doi:10.1007/s00222-010-0241-3
[20] Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Arithmetic harmonic analysis on character and quiver varieties. Duke Math. J. 160(2), 323-400 (2011) · Zbl 1246.14063 · doi:10.1215/00127094-1444258
[21] Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Arithmetic harmonic analysis on character and quiver varieties II. Adv. Math. 234, 85-128 (2013) · Zbl 1273.14101 · doi:10.1016/j.aim.2012.10.009
[22] Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Positivity for Kac polynomials and DT-invariants of quivers. Ann. Math. 177, 1147-1168 (2013) · Zbl 1301.16015 · doi:10.4007/annals.2013.177.3.8
[23] Hausel, T., Thaddeus, M.: Generators for the cohomology ring of the moduli space of rank 2 Higgs bundles. Proc. Lond. Math. Soc. 88, 632-658 (2004) · Zbl 1060.14048 · doi:10.1112/S0024611503014618
[24] Hausel, T., Rodriguez-Villegas, F.: Mixed Hodge polynomials of character varieties. Invent. Math. 174(3), 555-624 (2008) · Zbl 1213.14020 · doi:10.1007/s00222-008-0142-x
[25] Hitchin, N.: The self-duality equations on a Riemann surfac. Proc. Lond. Math. Soc. 55(3), 59-126 (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[26] Kac, V.: Root systems, representations of quivers and invariant theory. Lecture Notes in Mathematics, vol. 996, pp. 74-108. Springer, Berlin (1982) · Zbl 1065.14040
[27] Kac, V.: Infinite Dimensional Algebra, 3rd edn. Cambridge University Press, Cambridge (2003) · Zbl 1118.14003
[28] Kostov, V.P.: On the Deligne-Simpson problem. C. R. Acad. Sci. Paris Sér. I Math. 329, 657-662 (1999) · Zbl 0937.20024 · doi:10.1016/S0764-4442(00)88212-9
[29] Letellier, E.: Fourier transforms of invariant functions on finite reductive Lie Algebras. Lecture Notes in Mathematics, vol. 1859. Springer, Berlin (2005) · Zbl 1076.43001
[30] Letellier, E.: Quiver varieties and the character ring of general linear groups over finite fields. J. Eur. Math. Soc. 15, 1375-1455 (2013) · Zbl 1300.20054 · doi:10.4171/JEMS/395
[31] Letellier, E.: Tensor products of unipotent characters of general linear groups over finite fields. Transform. Groups 18, 233-262 (2013) · Zbl 1268.20048 · doi:10.1007/s00031-013-9211-3
[32] Logares, M., Munõz, V., Newstead, P.: Hodge polynomials of SL(2, C)-character varieties of surfaces of low genus. arXiv:1106.6011 · Zbl 1334.14006
[33] Lusztig, G.: On the finiteness of the number of unipotent classes. Invent. Math. 34, 201-213 (1976) · Zbl 0371.20039 · doi:10.1007/BF01403067
[34] Lusztig, G.: Green polynomials and singularities of unipotent classes. Adv. Math. 42, 169-178 (1981) · Zbl 0473.20029 · doi:10.1016/0001-8708(81)90038-4
[35] Lusztig, G.: Fourier transforms on a semisimple Lie algebra over \[{\mathbb{F}}_q\] Fq, Algebraic groups Utrecht 1986, pp. 177-188. Springer, Berlin (1987) · Zbl 0883.14012
[36] Lusztig, G., Srinivasan, B.: The characters of the finite unitary groups. J. Algebra 49, 167-171 (1977) · Zbl 0384.20008 · doi:10.1016/0021-8693(77)90277-0
[37] Macdonald, I.G: Symmetric functions and hall polynomials, Oxford Mathematical Monographs, 2nd edn. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1995) · Zbl 0824.05059
[38] Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, xiv+292 Springer, Berlin (1994) · Zbl 0797.14004
[39] Peters, C., Steenbrink, J.: Mixed Hodge structures. vol. 52, xiv+470 pp Springer, Berlin (2008) · Zbl 1138.14002
[40] Saito, M.: Mixed hodge modules. Publ. Res. Inst. Math. Sci. 26, 221-333 (1990) · Zbl 0727.14004 · doi:10.2977/prims/1195171082
[41] Simpson, C.T.: Nonabelian Hodge theory. In: Proceedings of the International Congress of Mathematicians, vols. I, II (Kyoto, 1990), pp. 747-756, Mathematical Society of Japan, Tokyo (1991) · Zbl 0765.14005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.