×

Indecomposable parabolic bundles and the existence of matrices in prescribed conjugacy class closures with product equal to the identity. (English) Zbl 1065.14040

Consider the Deligne-Simpson problem: For which tuples of conjugacy classes \(C_j\subset \text{GL}(n,{\mathbb C})\) do there exist irreducible tuples of matrices \(A_j\in C_j\) whose product is the identity matrix? The author considers a weaker version of the problem in which one requires the matrices \(A_j\) to belong only to the closures of the classes \(C_j\) and their tuple is not necessarily irreducible. To obtain the answer to this weaker problem he studies the possible dimension vectors of indecomposable parabolic bundles on the projective line. Both answers depend on the root system of a Kac-Moody Lie algebra.
The proofs use C. M. Ringel’s theory of tubular algebras [Tame algebras and integral quadratic forms, Lect. Notes Math. 1099 (1984; Zbl 0546.16013)], A. Mihai’s work on the existence of logarithmic connections [C. R. Acad. Sci., Paris, Sér. A 281, 435–438 (1975; Zbl 0323.53024) and Rev. Roum. Math. Pures Appl. 23, 215–232 (1978; Zbl 0379.53033)], the Riemann-Hilbert correspondence, and an algebraic version of Katz’s middle convolution operation [cf. M. Dettweiler and S. Reiter, J. Symb. Comput. 30, 761–798 (2000; Zbl 1049.12005)]. See also the survey on the Deligne-Simpson problem given by the reviewer [J. Algebra 281, 83–108 (2004; Zbl 1066.15016)].

MSC:

14H60 Vector bundles on curves and their moduli
15A24 Matrix equations and identities
16G10 Representations of associative Artinian rings
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

References:

[1] S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett., 5 (1998), 817-836. · Zbl 1004.14013
[2] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Am. Math. Soc.,85 (1957), 181-207. · Zbl 0078.16002
[3] P. Belkale, Local systems on P1-S for S a finite set, Compos. Math.,129 (2001), 67-86. · Zbl 1042.14031
[4] I. Biswas, A criterion for the existence of a flat connection on a parabolic vector bundle, Adv. Geom.,2 (2002), 231-241. · Zbl 1013.14010
[5] S. Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Representation Theory II (Ottawa, 1979), V. Dlab and P. Gabriel (eds.), Lect. Notes Math.,832, Springer, Berlin (1980), 103-169. · Zbl 0446.16031
[6] D. Chan and C. Ingalls, Non-commutative coordinate rings and stacks, Proc. London Math. Soc.,88 (2004), 63-88. · Zbl 1052.14002
[7] W. Crawley-Boevey, Geometry of the moment map for representations of quivers, Compos. Math.,126 (2001), 257-293. · Zbl 1037.16007
[8] W. Crawley-Boevey, Normality of Marsden-Weinstein reductions for representations of quivers, Math. Ann.,325 (2003), 55-79. · Zbl 1063.16016
[9] W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J.,118 (2003), 339-352. · Zbl 1046.15013
[10] W. Crawley-Boevey and J. Schröer, Irreducible components of varieties of modules, J. Reine Angew. Math.,553 (2002), 201-220. · Zbl 1062.16019
[11] P. Deligne, Equations différentielles à points singuliers réguliers, Lect. Notes Math.,163, Springer, Berlin (1970). · Zbl 0244.14004
[12] M. Dettweiler and S. Reiter, An algorithm of Katz and its application to the inverse Galois problem, J. Symb. Comput.,30 (2000), 761-798. · Zbl 1049.12005
[13] M. Furuta and B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math.,96 (1992), 38-102. · Zbl 0769.58009
[14] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, Singularities, representations of algebras, and vector bundles (Lambrecht, 1985), G.-M. Greuel and G. Trautmann (eds.), Lect. Notes Math.,1273, Springer, Berlin (1987), 265-297. · Zbl 0651.14006
[15] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, III, Ann. Math.,70 (1959), 167-205. · Zbl 0168.28103
[16] A. Haefliger, Local theory of meromorphic connections in dimension one (Fuchs theory), chapter III of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 129-149.
[17] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc.,120, no. 575 (1996). · Zbl 0849.16011
[18] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math.,56 (1980), 57-92. · Zbl 0427.17001
[19] V. G. Kac, Root systems, representations of quivers and invariant theory, Invariant theory (Montecatini, 1982), F. Gherardelli (ed.), Lect. Notes Math.,996, Springer, Berlin (1983), 74-108. · Zbl 0534.14004
[20] N. M. Katz, Rigid local systems, Princeton University Press, Princeton, NJ (1996). · Zbl 0864.14013
[21] V. P. Kostov, On the existence of monodromy groups of Fuchsian systems on Riemann’s sphere with unipotent generators, J. Dynam. Control Systems,2 (1996), 125-155. · Zbl 0948.34066
[22] V. P. Kostov, On the Deligne-Simpson problem, C. R. Acad. Sci., Paris, Sér. I, Math.,329 (1999), 657-662. · Zbl 0937.20024
[23] V. P. Kostov, On some aspects of the Deligne-Simpson problem, J. Dynam. Control Systems,9 (2003), 393-436. · Zbl 1031.15020
[24] V. P. Kostov, The Deligne-Simpson problem - a survey, preprint math.RA/0206298. · Zbl 1066.15016
[25] H. Kraft and Ch. Riedtmann, Geometry of representations of quivers, Representations of algebras (Durham, 1985), P. Webb (ed.) Lond. Math. Soc. Lect. Note Ser.,116, Cambridge Univ. Press (1986), 109-145. · Zbl 0632.16019
[26] H. Lenzing, Representations of finite dimensional algebras and singularity theory, Trends in ring theory (Miskolc, Hungary, 1996), Canadian Math. Soc. Conf. Proc.,22 (1998), Am. Math. Soc., Providence, RI (1998), 71-97. · Zbl 0895.16003
[27] B. Malgrange, Regular connections, after Deligne, chapter IV of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 151-172.
[28] V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structure, Math. Ann.,248 (1980), 205-239. · Zbl 0454.14006
[29] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, Representations of algebras (Ottawa, 1992), Can. Math. Soc. Conf. Proc.,14 (1993), Am. Math. Soc., Providence, RI (1993), 313-337. · Zbl 0809.16012
[30] A. Mihai, Sur le résidue et la monodromie d’une connexion méromorphe, C. R. Acad. Sci., Paris, Sér. A,281 (1975), 435-438. · Zbl 0323.53024
[31] A. Mihai, Sur les connexions méromorphes, Rev. Roum. Math. Pures Appl.,23 (1978), 215-232. · Zbl 0379.53033
[32] O. Neto and F. C. Silva, Singular regular differential equations and eigenvalues of products of matrices, Linear Multilinear Algebra,46 (1999), 145-164. · Zbl 0935.15006
[33] C. M. Ringel, Tame algebras and integral quadratic forms, Lect. Notes Math.,1099, Springer, Berlin (1984). · Zbl 0546.16013
[34] L. L. Scott, Matrices and cohomology, Ann. Math.,105 (1977), 473-492. · Zbl 0399.20047
[35] C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque,98 (1982), 1-209. · Zbl 0517.14008
[36] C. T. Simpson, Products of Matrices, Differential geometry, global analysis, and topology (Halifax, NS, 1990), Can. Math. Soc. Conf. Proc.,12 (1992), Am. Math. Soc., Providence, RI (1991), 157-185. · Zbl 0756.15022
[37] K. Strambach and H. Völklein, On linearly rigid tuples, J. Reine Angew. Math.,510 (1999), 57-62. · Zbl 0931.12006
[38] H. Völklein, The braid group and linear rigidity, Geom. Dedicata,84 (2001), 135-150. · Zbl 0990.20021
[39] A. Weil, Generalization de fonctions abeliennes, J. Math. Pures Appl.,17 (1938), 47-87. · JFM 64.0361.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.