×

Fast enclosure for solutions of generalized Sylvester equations. (English) Zbl 1310.65048

The author describes a method for computing verified bounds on the solution of a generalized Sylvester equation \(AXB+CXD=E\) which requires \(O(m^3+n^3)\) operations, where \((m,n)\) is the size of \(X\).

MSC:

65F30 Other matrix algorithms (MSC2010)
65G20 Algorithms with automatic result verification
65G50 Roundoff error
15A24 Matrix equations and identities

Software:

mctoolbox; VERSOFT; CTLEX
Full Text: DOI

References:

[1] Chu K.E.: The solution of the matrix equations AXB CXD = E AND (YA DZ, YC BZ) = (E, F). Linear Alg. Appl. 93, 93–105 (1987) · Zbl 0631.15006 · doi:10.1016/S0024-3795(87)90314-4
[2] Datta B.N., Datta K.: Theoretical and computational aspects of some linear algebra problems in control theory. In: Byrnes, C.I., Lindquist, A. (eds) Computational and Combinatorial Methods in Systems Theory, pp. 201–212. Elsevier, Amsterdam (1986)
[3] Frommer A., Hashemi B.: Verified error bounds for solutions of Sylvester matrix equations. Linear Alg. Appl. 436, 405–420 (2012) · Zbl 1236.65045 · doi:10.1016/j.laa.2010.12.002
[4] Hashemi, B.: Verified computation of symmetric solutions to continuous-time algebraic Riccati matrix equations. Proc. SCAN conference, pp. 54–56. Novosibirsk (2012)
[5] Higham N.: Accuracy and Stability of Numerical Algorithms. SIAM Publications, Philadelphia (2002) · Zbl 1011.65010
[6] Horn R.A., Johnson C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994) · Zbl 0801.15001
[7] Kressner, D., Mehrmann, V., Penzl, T.: CTLEX–a collection of benchmark examples for continuous-time Lyapunov equations. Tech. Rep. SLICOT Working Note 1999–2016 (1999) http://www.slicot.org/REPORTS/SLWN1999-6.ps.gz
[8] Luther W., Otten W.: Verified calculation of the solution of algebraic Riccati equation. In: Csendes, T. (eds) Developments in Reliable Computing, pp. 105–118. Kluwer Academic Publishers, Dordrecht (1999) · Zbl 0951.65040
[9] Luther, W., Otten, W., Traczinski, H.: Verified calculation of the solution of continuous- and discrete time algebraic Riccati equation. Schriftenreihe des Fachbereichs Mathematik der Gerhard-Mercator-Universität Duisburg SM-DU-422 (1998)
[10] Luther, W., Otten, W., Traczinski, H.: Verified calculation of the solution of discrete time algebraic Riccati equation. Proc. MISC workshop, pp. 411–421. Girona (1999)
[11] Meyer C.D.: Matrix Analysis and Applied Linear Algebra. SIAM Publications, Philadelphia (2000) · Zbl 0962.15001
[12] Miyajima S.: Numerical enclosure for each eigenvalue in generalized eigenvalue problem. J. Comput. Appl. Math. 236, 2545–2552 (2012) · Zbl 1248.65039 · doi:10.1016/j.cam.2011.12.013
[13] Miyajima S: Fast enclosure for solutions of Sylvester equations. Linear Alg. Appl. 439, 856–878 (2013) · Zbl 1281.65069 · doi:10.1016/j.laa.2012.07.001
[14] Rohn, J.: VERSOFT: Verification software in MATLAB / INTLAB. http://uivtx.cs.cas.cz/\(\sim\)rohn/matlab/
[15] Seif N., Hussein S., Deif A.: The interval Sylvester matrix equation. Computing 52, 233–244 (1994) · Zbl 0807.65046 · doi:10.1007/BF02246505
[16] Shashikhin V.: Robust assignment of poles in large-scale interval systems. Autom. Remote Control 63, 200–208 (2002) · Zbl 1090.93552 · doi:10.1023/A:1014239423012
[17] Shashikhin V: Robust stabilization of linear interval systems. J. Appl. Math. Mech. 66, 393–400 (2002) · Zbl 1066.93020 · doi:10.1016/S0021-8928(02)00048-5
[18] Yamamoto T.: Error bounds for approximate solutions of systems of equations. Japan J. Indust. Appl. Math. 1, 157–171 (1984) · Zbl 0571.65035 · doi:10.1007/BF03167865
[19] Yano, K., Koga, M.: Verified numerical computation in LQ control problem. Trans. SICE. 45:261–267 (2009) (in Japanese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.