×

Boundary regularity for self-controlling and Cosserat models of viscoplasticity: interior estimates for models of power type. (English) Zbl 07278884

Summary: We prove regularity up to boundary for self-controlling and Cosserat models (i.e. those possessing velocity in \(L^2(H^1))\). The technique we use was recently discovered by Löbach and Frehse for the study of regularity for isotropic and kinematic hardening. In the second part of the paper we prove higher interior regularity for solutions to models of power type, for which the velocity field is less regular.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Chełmiński, K . Mathematical analysis of the Armstrong-Frederick model from the theory of inelastic deformations of metals. First results and open problems. Continuum Mech Thermodyn 2003; 15: 221-245. · Zbl 1068.74012 · doi:10.1007/s00161-002-0112-2
[2] Kamiński, P . Regularity of solutions to coercive and self-controlling viscoplastic problems. Avaliable at: http://www.mini.pw.edu.pl/ pkamins/pdf/reg08.pdf. · Zbl 1231.35032
[3] Alber, H-D, Nesenenko, S. Local \(H^1\) -regularity and \(H^{1/3-δ}\)-regularity up to the boundary in time dependent viscoplasticity. Asymptotic Anal 2009; 63: 151-187. · Zbl 1179.35324
[4] Bensoussan, A, Frehse, J. Asymptotic behaviour of Norton-Hoff’s law in plasticity theory and \(H^1\) regularity. Boundary Value Problems for Partial Differential Equations and Applications, 1993; pp. 3-25. · Zbl 0831.35047
[5] Bensoussan, A, Frehse, J. Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and \(H^1\) regularity. Comment Math Univ Carolinae 1996; 37: 285-304. · Zbl 0851.35079
[6] Frehse, J, Málek, J. Boundary regularity results for models of elasto-perfect plasticity. Math Mod Meth Appl Sci 1999; 9: 1307-1321. · Zbl 1092.74523 · doi:10.1142/S0218202599000579
[7] Knees, D . On global spatial regularity and convergence rates for time dependent elasto-plasticity. Math Mod Meth Appl Sci 2010; 20: 1823-1858. · Zbl 1207.35083 · doi:10.1142/S0218202510004805
[8] Seregin, GA . Differentiability of local extremals of variational problems of mechanics of ideally elasto-plastic media. Differential Eqns 1987; 23: 1981-1991 (in Russian). · Zbl 0655.73017
[9] Löbach, D . Regularity Analysis for Problems of Elastoplasticity with Hardening. PhD thesis, University of Bonn, Germany, 2009. · Zbl 1425.74001
[10] Frehse, J, Löbach, D. Regularity results for three dimensional isotropic and kinematic hardening including boundary differentiability. Math Mod Meth Appl Sci 2009; 19: 2231-2262. · Zbl 1248.35207 · doi:10.1142/S0218202509004108
[11] Neff, P, Knees, D. Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J Math Anal 2008; 40: 21-43. · Zbl 1193.35224 · doi:10.1137/070695824
[12] Alber, H-D . Materials with Memory. New York: Springer, 1998. · Zbl 0977.35001 · doi:10.1007/BFb0096273
[13] Brézis, H . Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Amsterdam: North-Holland, 1973. · Zbl 0252.47055
[14] Adams, RA . Sobolev Spaces. New York: Academic Press, 1975.
[15] Triebel, H . Interpolation Theory, Function Spaces, Differential Operators. Heidelberg: Johann Ambrosius Barth, 1995. · Zbl 0830.46028
[16] Nikol’skiǐ, SM . Approximation of Functions of Several Variables and Imbedding Theorems. New York: Springer-Verlag, 1975. · Zbl 0307.46024 · doi:10.1007/978-3-642-65711-5
[17] Peetre, J . New thoughts on Besov spaces. (Duke University Mathematics Series). Durham, NC: Duke University, 1976. · Zbl 0356.46038
[18] Butzer, PL, Berens, H. Semi-groups of Operators and Approximation. New York: Springer-Verlag, 1967. · Zbl 0164.43702 · doi:10.1007/978-3-642-46066-1
[19] Lunardi, A . Interpolation Theory (Scuola Normale Superiore di Pisa Lecture Notes, vol. 9). Pisa: Scuola Normale Superiore di Pisa, 2009. · Zbl 1171.41001
[20] Hunt, R . On L(p,q) spaces. L’Enseignement Math 1966; 12: 249-276. · Zbl 0181.40301
[21] Lorentz, GG . Some new functional spaces. Ann Math 1950; 51: 37-55. · Zbl 0035.35602 · doi:10.2307/1969496
[22] Tartar, L . An introduction to Sobolev spaces and interpolation spaces. Berlin: Springer, 2007. · Zbl 1126.46001
[23] Evans, LC . Partial Differential Equations. Providence, RI: American Mathematical Society, 1998. · Zbl 0902.35002
[24] Kamiński, P . Nonlinear problems in inelastic deformation theory. ZAMM 2008; 88: 267-282. · Zbl 1135.74020 · doi:10.1002/zamm.200700120
[25] Temam, R . Navier-Stokes Equations. Theory and Numerical Analysis. Amsterdam: North-Holland, 1984. · Zbl 0568.35002
[26] Chełmiński, K, Gwiazda, P. Nonhomogeneous initial-boundary value problems for coercive and self-controlling models of monotone type. Continuum Mech Thermodyn 2000; 12: 217-234. · Zbl 1003.74033 · doi:10.1007/s001610050136
[27] Alber, H-D, Chełmiński, K. Quasistatic problems in viscoplasticity theory. FB Math 2002; Preprint No. 2190, TU Darmstadt. · Zbl 1114.74007
[28] Chełmiński, K, Neff, P. \(H_{loc}^1\) -stress and strain regularity in Cosserat plasticity. ZAMM 2009; 89: 257-266. · Zbl 1160.74007 · doi:10.1002/zamm.200800123
[29] Chełmiński, K, Neff, P. Infinitesimal elastic-plastic Cosserat micropolar theory. Modelling and global existence in the rate-independent case. Proc Roy Soc Edinburgh 2005; 135A: 1017-1039. · Zbl 1084.74004
[30] Alber, H-D, Chełmiński, K. Quasistatic problems in viscoplasticity theory II: models with nonlinear hardening. Math Mod Meth Appl Sci 2007; 17: 189-213. · Zbl 1114.74007 · doi:10.1142/S0218202507001887
[31] DiBenedetto, E . Degenerate Parabolic Equations. New York: Springer-Verlag, 1993. · Zbl 0794.35090 · doi:10.1007/978-1-4612-0895-2
[32] Bojarski, B, Iwaniec, T. \(p\) -harmonic equation and quasiregular mappings. In Partial Differential Equations ( Banach Center Publications, vol. 19). Warsaw: PWN - Polish Scientific Publishers, 1987, pp. 25-38. · Zbl 0659.35035 · doi:10.4064/-19-1-25-38
[33] Kałamajska, A . Coercive inequalities on weighted Sobolev spaces. Colloq Math 1994; 66: 309-318. · Zbl 0827.46028 · doi:10.4064/cm-66-2-309-318
[34] Duoandikoetxea, J . Fourier Analysis. Providence, RI: American Mathematical Society, 2001. · Zbl 0969.42001
[35] Chełmiński, K . On quasistatic inelastic models of gradient type with convex composite constitutive equations. Central Eur J Math 2003; 4: 670-689. · Zbl 1038.35135 · doi:10.2478/BF02475187
[36] Kamiński, P . Nonlinear quasistatic problems of gradient type in inelastic deformations theory. J Math Anal Appl 2009; 357: 284-299. · Zbl 1178.35360 · doi:10.1016/j.jmaa.2009.04.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.