Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 1, 2003

On quasistatic inelastic models of gradient type with convex composite constitutive equations

  • Krzysztof Chełmiński EMAIL logo
From the journal Open Mathematics

Abstract

This article defines and presents the mathematical analysis of a new class of models from the theory of inelastic deformations of metals. This new class, containing so called convex composite models, enlarges the class containing monotone models of gradient type defined in [1]. This paper starts to establish the existence theory for models from this new class; we restrict our investigations to the coercive and linear self-controlling case.

Keywords: 35Q72; 73E60; 73F99

[1] H.-D. Alber: Materials with memory, Lecture Notes in Math., Vol. 1682, Springer, Berlin Heidelberg New York, 1998. Search in Google Scholar

[2] H.-D. Alber and K. Chełmiński: “Quasistatic problems in viscoplasticity theory I: Models with linear hardening”, A part of the monograph: I. Gohberg et al.: Operator theoretical methods and applications to mathematical physics. The Erhard Meister memorial volume, Birkhäuser, Basel, in print. Search in Google Scholar

[3] G. Anzellotti and S. Luckhaus: “Dynamical evolution of elasto-perfectly plastic bodies”, Appl. Math. Optim., Vol. 15, (1987), pp. 121–140. http://dx.doi.org/10.1007/BF0144265010.1007/BF01442650Search in Google Scholar

[4] J.P. Aubin and A. Cellina: Differential inclusions. Springer, Berlin Heidelberg New York, 1984. 10.1007/978-3-642-69512-4Search in Google Scholar

[5] M. Brokate: “Elastoplastic constitutive laws of nonlinear kinematic hardening type”, Technical Report 97-14, Berichtsreihe des Mathematischen Seminars, Kiel, 1997. Search in Google Scholar

[6] K. Chełmiński: “Coercive limits for a subclass of monotone constitutive equations in the theory of inelastic material behaviour of metals”, Mat. Stos., Vol. 40, (1997), pp. 41–81. Search in Google Scholar

[7] K. Chełmiński: “On self-controlling models in the theory of inelastic material behaviour of metals”, Contin. Mech. Thermodyn., Vol. 10, (1998), pp. 121–133. http://dx.doi.org/10.1007/s00161005008510.1007/s001610050085Search in Google Scholar

[8] K. Chełmiński: “Global existence of weak-type solutions for models of monotone type in the theory of inelastic deformations”, Math. Meth. Appl. Sci., Vol. 25, (2002), pp. 1195–1230. http://dx.doi.org/10.1002/mma.33610.1002/mma.336Search in Google Scholar

[9] K. Chełmiński: “Coercive approximation of viscoplasticity and plasticity”, Asymptotic Analysis, Vol. 26, (2001), pp. 105–133. Search in Google Scholar

[10] K. Chełmiński: “On noncoercive models in the theory of inelastic deformations with internal variables”, ZAMM, Vol. 81, Suppl. 3, (2001), pp. 595–596. Search in Google Scholar

[11] K. Chełmiński: “On quasistatic models in the theory of inelastic deformations”, Proceedings in Applied Mathematics, Vol. 1, (2002), pp. 401–402. http://dx.doi.org/10.1002/1617-7061(200203)1:1<401::AID-PAMM401>3.0.CO;2-Z10.1002/1617-7061(200203)1:1<401::AID-PAMM401>3.0.CO;2-ZSearch in Google Scholar

[12] K. Chełmiński and P. Gwiazda: “Monotonicity of operators of viscoplastic response: application to the model of Bodner-Partom”, Bull. Polish Acad. Sci.: Tech. Sci., Vol. 47, (1999), pp. 191–208. Search in Google Scholar

[13] K. Chełmiński and P. Gwiazda: “Nonhomogeneous initial-boundary value problems for coercive and self-controlling models of monotone type”, Contin. Mech. Thermodyn., Vol. 12, (2000), pp. 217–234. http://dx.doi.org/10.1007/s00161005013610.1007/s001610050136Search in Google Scholar

[14] K. Chełmiński and Z. Naniewicz: “Coercive limits for constitutive equations of monotone-gradient type”, Nonlinear Anal., Vol. 48, (2002), pp. 1197–1214. http://dx.doi.org/10.1016/S0362-546X(01)00096-710.1016/S0362-546X(01)00096-7Search in Google Scholar

[15] F.H. Clarke: Optimization and nonsmooth analysis, CMR Université de Montréal, Montréal, 1989. Search in Google Scholar

[16] S. Guillaume: “Subdifferential evolution inclusion in nonconvex analysis”, Positivity, Vol. 4, (2000), pp. 357–395. http://dx.doi.org/10.1023/A:100982141748410.1023/A:1009821417484Search in Google Scholar

[17] P. Gwiazda: “Non-homogeneous boundary value problem for the Chan-Bodner-Linholm model”, Math. Methods Appl. Sci., Vol. 23:11, (2000), pp. 1011–1022. http://dx.doi.org/10.1002/1099-1476(20000725)23:11<1011::AID-MMA148>3.0.CO;2-#Search in Google Scholar

[18] B. Halphen and Nguyen Quoc Son: “Sur les matèriaux standards généralisés”, J. Méc., Vol. 14, (1975), pp. 39–63. Search in Google Scholar

[19] P.-M. Suquet: “Evolution problems for a class of dissipative materials”, Quart. Appl. Math., Vol. 38, (1980), pp. 391–414. Search in Google Scholar

[20] R. Temam: “A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity”, Arch. Rational Mech. Anal., Vol. 95, (1986), pp. 137–183. http://dx.doi.org/10.1007/BF0028108510.1007/BF00281085Search in Google Scholar

Published Online: 2003-12-1
Published in Print: 2003-12-1

© 2003 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.10.2024 from https://www.degruyter.com/document/doi/10.2478/BF02475187/html
Scroll to top button