×

Free vibration of a FGPM circular plate placed in a uniform magnetic field. (English) Zbl 1293.74169

Summary: In this paper, free vibration of a circular plate composed of a transversely isotropic functionally graded piezoelectric material (FGPM) placed in a uniform magnetic field is investigated. Material properties are assumed to depend on the thickness of the circular plate and they are expressed as the same exponential function of \(h\). The problem of free vibration for the transversely isotropic FGPM circular plate with clamped and simply supported boundary conditions is solved by means of the state space method. Numerical examples and some useful discussions are given to demonstrate the significant influence of material inhomogeneity, and adopting a certain value of the graded index can optimize structures of the circular plate. This will be of particular importance in modern engineering design.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Yang ZG, Zhong Z, Dai Y (2003) Exact solution for axisymmetric free vibration of a functionally graded piezoelectric circular plate. Chin Q Mech 24:506-511
[2] Li SR, Fan LL (2007) Free vibration of functionally graded circular plates in thermal environment. J Vib Eng 20:353-360
[3] Allahverdizadeh A, Naei MH, Nikkhah BM (2008) Nonlinear free and forced vibration analysis of thin circular functionally graded plates. J Sound Vib 310:966-984 · doi:10.1016/j.jsv.2007.08.011
[4] Allahverdizadeh A, Naei MH, Nikkhah BM (2008) Vibration amplitude and thermal effects on the nonlinear behavior of thin circular functionally graded plates. Int J Mech Sci 50:445-454 · Zbl 1264.74084 · doi:10.1016/j.ijmecsci.2007.09.018
[5] Nie GJ, Zhong Z (2007) Semi-analytical solution for three-dimensional vibration of functionally graded circular plates. Comput Methods Appl Mech Eng 196:4901-4910 · Zbl 1173.74339 · doi:10.1016/j.cma.2007.06.028
[6] Nie GJ, Zhong Z (2009) Three-dimensional dynamical analysis of functionally graded magnetoelectro-elastic circular plates. J Tongji Univ, Nat Sci 37:749-754
[7] Chen WQ, Ding HJ (2002) On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mech 153:207-216 · Zbl 1008.74038 · doi:10.1007/BF01177452
[8] Zhang XR, Zhong Z (2005) Three dimensional exact solution for free vibration of functionally gradient piezoelectric circular plate. Chin Q Mech 26:81-86
[9] Ebrahimi F, Rastgoo A, Kargarnovin MH (2008) Analytical investigation on axisymmetric free vibrations of moderately thick circular functionally graded plate integrated with piezoelectric layers. J Mech Sci Technol 22:1058-1072 · doi:10.1007/s12206-008-0303-2
[10] Fu YM, Zhang P (2009) Nonlinear dynamic response of axisymmetric piezoelectric circular plates. Chin J Appl Mech 26:467-472
[11] Wang Y, Xu RQ, Ding HJ (2010) Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads. Acta Mech 215:287-305 · Zbl 1398.74213 · doi:10.1007/s00707-010-0332-7
[12] Li XY, Wu J, Ding HJ, Chen WQ (2011) 3D analytical solution for a functionally graded transversely isotropic piezoelectric circular plate under tension and bending. Int J Eng Sci 49:664-676 · doi:10.1016/j.ijengsci.2011.03.001
[13] Ghorbanpour Arani A, Kolahchi R, Mosallaie Barzoki AA, Loghman A (2012) Electro-thermo-mechanical behaviors of FGPM spheres using analytical method and ANSYS software. Appl Math Model 36:139-157 · Zbl 1236.74277 · doi:10.1016/j.apm.2011.05.031
[14] Dai HL, Jiang HJ, Yang L (2012) Time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields. Solid State Sci 14:587-597 · doi:10.1016/j.solidstatesciences.2012.02.011
[15] Xie H, Dai HL, Guo ZY (2012) Dynamic response of a FGPM hollow cylinder under the coupling of multi-fields. Appl Math Comput 218:10492-10499 · Zbl 1250.78028 · doi:10.1016/j.amc.2012.04.013
[16] Yas MH, Jodaei A, Irandoust S, Nasiri Aghdam M (2012) Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations. Meccanica 47(6):1401-1423 · Zbl 1293.74215 · doi:10.1007/s11012-011-9525-y
[17] Dai HL, Dai T, Zheng HY (2012) Stresses distributions in a rotating functionally graded piezoelectric hollow cylinder. Meccanica 47(2):423-436 · Zbl 1293.74096 · doi:10.1007/s11012-011-9447-8
[18] Jabbari M, Karampour S, Eslami MR (2013) Steady state thermal and mechanical stresses of a poro-piezo-FGM hollow sphere. Meccanica 48(3):699-719 · Zbl 1293.74088 · doi:10.1007/s11012-012-9625-3
[19] Sosa HA, Pak YE (1990) Three-dimensional eigenfunction analysis of a crack in a piezoelectric material. Int J Solids Struct 26(1):1-15 · Zbl 0707.73064 · doi:10.1016/0020-7683(90)90090-I
[20] Ezzat MA (1997) Generation of generalized magnetothermoelastic waves by thermal shock in a perfectly conducting half-space. J Therm Stresses 20(6):633-647 · doi:10.1080/01495739708956121
[21] Dai HL, Wang X (2004) Dynamic response of piezoelectric hollow cylinders in an axial magnetic field. Int J Solids Struct 41(18-19):5231-5246 · Zbl 1179.74040 · doi:10.1016/j.ijsolstr.2004.04.019
[22] John KD (1984) Electromagnetic. McGraw-Hill, New York
[23] Dai HL, Fu YM (2007) Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to mechanical load. Int J Press Vessels Piping 84:132-138 · doi:10.1016/j.ijpvp.2006.10.001
[24] Ding HJ, Xu RQ, Chi YW, Chen WQ (1999) Free axisymmetric vibration of transversely isotropic piezoelectric circular plates. Int J Solids Struct 36:4629-4652 · Zbl 0943.74021 · doi:10.1016/S0020-7683(98)00206-6
[25] Fan JR (1996) Exact theory of laminated thick plates and shells. Beijing Science, Beijing, pp 111-385
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.