×

Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations. (English) Zbl 1293.74215

Summary: Three-dimensional free vibration analysis of functionally graded piezoelectric (FGPM) annular plates resting on Pasternak foundations with different boundary conditions is presented. The material properties are assumed to have an exponent-law variation along the thickness. A semi-analytical approach which makes use of state-space method in thickness direction and one-dimensional differential quadrature method in radial direction is utilized to obtain the influences of the Winkler and shearing layer elastic coefficients of the foundations on the non-dimensional natural frequencies of functionally graded piezoelectric annular plates. The analytical solution in the thickness direction can be acquired using the state-space method and approximate solution in the radial direction can be obtained using the one-dimensional differential quadrature method. Numerical results are given to demonstrate the convergency and accuracy of the present method. The influences of the material property graded index, circumferential wave number and thickness of the annular plate on the dynamic behavior are also investigated. Since three-dimensional free vibration analysis of FGPM annular plates on elastic foundations has not been implemented before, the new results can be used as benchmark solutions for future researches.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74E05 Inhomogeneity in solid mechanics
Full Text: DOI

References:

[1] Gandhi MV, Thompson BS (1992) Smart materials and structures. Chapman & Hall, London
[2] Rao SS, Sunar M (1994) Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey. Appl Mech Rev 47:113–123 · doi:10.1115/1.3111074
[3] Branco PJC, Dente JA (2004) On the electromechanics of a piezoelectric transducer using a bimorph cantilever undergoing asymmetric sensing and actuation. Smart Mater Struct 13(4):631–642 · doi:10.1088/0964-1726/13/4/001
[4] Kruusing A (2000) Analysis and optimization of loaded cantilever beam microactuators. Smart Mater Struct 9(2):186–196 · doi:10.1088/0964-1726/9/2/309
[5] Zhu XH, Meng ZY (1995) Operational principle fabrication and displacement characteristic of a functionally gradient piezoelectric ceramic actuator. Sens Actuators 48:169–176 · doi:10.1016/0924-4247(95)00996-5
[6] Wu CCM, Kahn M, Moy W (1996) Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79:809–812 · doi:10.1111/j.1151-2916.1996.tb07951.x
[7] Zhong Z, Shang ET (2003) Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. Int J Solids Struct 40:5335–5352 · Zbl 1060.74568 · doi:10.1016/S0020-7683(03)00288-9
[8] Lu P, Lee HP, Lu C (2006) Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism. Compos Struct 72:352–363 · doi:10.1016/j.compstruct.2005.01.012
[9] Takagi K, Li JF, Yokoyama S, Watanabe R, Almajid A, Taya M (2002) Design and fabrication of functionally graded PZT/Pt piezoelectric bimorph actuator. Sci Technol Adv Mater 3:217–224 · doi:10.1016/S1468-6996(02)00017-7
[10] Lee JS, Jiang LZ (1996) Exact electroelastic analysis of piezoelectric laminae via state-space approach. Int J Solids Struct 33(7):977–990 · Zbl 0919.73291 · doi:10.1016/0020-7683(95)00083-6
[11] Bert CW, Malik M (1997) Differential quadrature: a powerful new technique for analysis of composite structures. Compos Struct 39(3–4):179–189 · doi:10.1016/S0263-8223(97)00112-8
[12] Chen WQ, Ding HJ (2000) Bending of functionally graded piezoelectric rectangular plates. Acta Mech Solida Sin 13(4):312–319
[13] Chen WQ, Ding HJ (2002) On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mech 153:207–216 · Zbl 1008.74038 · doi:10.1007/BF01177452
[14] Lim CW, He LH (2001) Exact solution of a compositionally graded piezoelectric layer under uniform stretch bending and twisting. Int J Mech Sci 43:2479–2492 · Zbl 1035.74025 · doi:10.1016/S0020-7403(01)00059-5
[15] Reddy JN, Cheng ZQ (2001) Three-dimensional solutions of smart functionally graded plates. J Appl Mech 68:234–241 · Zbl 1110.74647 · doi:10.1115/1.1347994
[16] Lu P, Lee HP, Lu C (2005) An exact solution for simply supported functionally graded piezoelectric laminates in cylindrical bending. Int J Mech Sci 47:437–458 · Zbl 1192.74107 · doi:10.1016/j.ijmecsci.2005.01.012
[17] Li XY, Ding HJ, Chen WQ (2008) Three-dimensional analytical solution for a transversely isotropic functionally graded piezoelectric circular plate subject to a uniform electric potential difference. Sci Chin Ser G, Phys Mech Astron 51(8):1116–1125 · Zbl 1154.74026 · doi:10.1007/s11433-008-0100-z
[18] Xiang HJ, Shi ZF (2009) Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load. Eur J Mech A, Solids 28:338–346 · Zbl 1156.74325 · doi:10.1016/j.euromechsol.2008.06.007
[19] Li Y, Shi ZF (2009) Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature. Compos Struct 87:257–264 · doi:10.1016/j.compstruct.2008.01.012
[20] Alibeigloo A, Nouri V (2010) Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method. Compos Struct 92:1775–1785 · doi:10.1016/j.compstruct.2010.02.004
[21] Gupta US, Lal R, Jain SK (1990) Effect of elastic foundation on axisymmetric vibrations of polar orthotropic circular plates of variable thickness. J Sound Vib 139:503–513 · doi:10.1016/0022-460X(90)90679-T
[22] Laura PAA, Gutierrez RH (1991) Free vibrations of a solid circular plate of linearly varying thickness and attached to Winkler foundation. J Sound Vib 144:149–161 · doi:10.1016/0022-460X(91)90738-6
[23] Xiang Y, Wang CM, Kitipornchai S (1994) Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations. Int J Mech Sci 36:311–316 · Zbl 0799.73048 · doi:10.1016/0020-7403(94)90037-X
[24] Ju FH, Lee PKH (1995) Free vibration of plates with stepped variations in thickness on non-homogeneous elastic foundations. J Sound Vib 183:533–545 · Zbl 0966.74502 · doi:10.1006/jsvi.1995.0269
[25] Matsunaga H (2000) Vibration and stability of, thick plates on elastic foundations. J Eng Mech 126:27–34 · doi:10.1061/(ASCE)0733-9399(2000)126:1(27)
[26] Gupta US, Ansari AH, Sharma S (2006) Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation. J Sound Vib 297:457–476 · Zbl 1243.74042 · doi:10.1016/j.jsv.2006.01.073
[27] Hosseini Hashemi Sh, Rokni Damavandi Taher H, Omidi M (2008) 3-D free vibration analysis of annular plates on Pasternak elastic foundation via p-Ritz method. J Sound Vib 311:1114–1140 · doi:10.1016/j.jsv.2007.10.020
[28] Hosseini-Hashemi Sh, Omidi M, Rokni Damavandi Taher H (2009) The validity range of CPT and Mindlin plate theory in comparison with 3-D vibrational analysis of circular plates on the elastic foundation. Eur J Mech A, Solids 28:289–304 · Zbl 1156.74332 · doi:10.1016/j.euromechsol.2008.07.012
[29] Hsu M-H (2010) Vibration analysis of orthotropic rectangular plates on elastic foundations. Compos Struct 92:844–852 · doi:10.1016/j.compstruct.2009.09.015
[30] Malekzadeh P, Afsari A, Zahedinejad P, Bahadori R (2010) Three-dimensional layerwise-finite element free vibration analysis of thick laminated annular plates on elastic foundation. Appl Math Model 34:776–790 · Zbl 1185.74046 · doi:10.1016/j.apm.2009.06.015
[31] Malekzadeh P (2009) Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations. Compos Struct 89:367–373 · doi:10.1016/j.compstruct.2008.08.007
[32] Amini MH, Soleimani M, Rastgoo A (2009) Three-dimensional free vibration analysis of functionally graded material plates resting on an elastic foundation. Smart Mater Struct 18:085015, 9 pp · doi:10.1088/0964-1726/18/8/085015
[33] Yas MH, Sobhani Aragh B (2010) Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation. Int J Eng Sci 48:1881–1895 · Zbl 1231.74287 · doi:10.1016/j.ijengsci.2010.06.015
[34] Hosseini-Hashemi Sh, Akhavan H, Rokni Damavandi Taher H, Daemi N, Alibeigloo A (2010) Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation. Mater Des 31:1871–1880 · doi:10.1016/j.matdes.2009.10.060
[35] Hosseini-Hashemi Sh, Rokni Damavandi Taher H, Akhavan H (2010) Vibration analysis of radially FGM sectorial plates of variable thickness on elastic foundations. Compos Struct 92:1734–1743 · doi:10.1016/j.compstruct.2009.12.016
[36] Dumir PC (1988) Large deflection axisymmetric analysis of orthotropic annular plates on elastic foundations. Int J Solids Struct 24:777–787 · doi:10.1016/0020-7683(88)90047-9
[37] Nie GJ, Zhong Z (2007) Semi-analytical solution for three-dimensional vibration of functionally graded circular plates. Comput Methods Appl Mech Eng 196:4901–4910 · Zbl 1173.74339 · doi:10.1016/j.cma.2007.06.028
[38] Chen WQ, Lv CF, Bian ZG (2003) Elasticity solution for free vibration of laminated beams. Compos Struct 62(1):75–82 · doi:10.1016/S0263-8223(03)00086-2
[39] Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. Int J Numer Methods Fluids 15:791–798 · Zbl 0762.76085 · doi:10.1002/fld.1650150704
[40] Bert CW, Malik M (1996) Differential quadrature method in computational mechanics. A review. Appl Mech Rev 49:1–28 · doi:10.1115/1.3101882
[41] Dong CY (2008) Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method. Mater Des 29:1518–1525 · doi:10.1016/j.matdes.2008.03.001
[42] Nie GJ, Zhong Z (2010) Dynamic analysis of multi-directional functionally graded annular plates. Appl Math Model 34:608–616 · Zbl 1185.74047 · doi:10.1016/j.apm.2009.06.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.