×

When does a Bernoulli convolution admit a spectrum? (English) Zbl 1266.42012

A discrete subset \(\Lambda\subset\mathbb{C}\) is a spectrum of a probability measure \(\mu\) if \(\{\exp(-2\pi i\lambda):\lambda\in \Lambda\}\) creates an orthogonal basis for \(L^2(\mu)\). A spectral measure is a probability measure that admits a spectrum. It is proved that the distribution of \[ \sum^\infty_{n=1} \varepsilon_n\rho^n/2, \] called Bernoulli convolution, where \(\varepsilon_n\in \{-1,+1\}\) are choosen independently with probability \(1/2\), is not a spectral measure for irrational contraction rates \(\rho\) and that in the case of rational \(\rho\) the Bernoulli convolution fails to be a spectral measure unless \(\rho\) is the reciprocal of an even integer.

MSC:

42A65 Completeness of sets of functions in one variable harmonic analysis
42B05 Fourier series and coefficients in several variables
42C30 Completeness of sets of functions in nontrigonometric harmonic analysis
28A78 Hausdorff and packing measures
28A80 Fractals
Full Text: DOI

References:

[1] Łaba, I., Fugledes conjecture for a union of two intervals, Proc. Amer. Math. Soc., 129, 2965-2972 (2001) · Zbl 0974.42011
[2] Łaba, I.; Wang, Y., On spectral Cantor measures, J. Funct. Anal., 193, 409-420 (2002) · Zbl 1016.28009
[3] Łaba, I.; Wang, Y., Some properties of spectral measures, Appl. Comput. Harmon. Anal., 20, 149-157 (2006) · Zbl 1096.42017
[4] Dai, X.-R.; Feng, D.-J.; Wang, Y., Refinable functions with non-integer dilations, J. Funct. Anal., 250, 1-20 (2007) · Zbl 1128.42018
[5] Dutkay, D. E.; Han, D.; Sun, Q., On the spectra of a Cantor measure, Adv. Math., 221, 251-276 (2009) · Zbl 1173.28003
[6] D.E. Dutkay, D. Han, Q. Sun, Divergence of Mock and scrambled Fourier series. arXiv:1103.4380; D.E. Dutkay, D. Han, Q. Sun, Divergence of Mock and scrambled Fourier series. arXiv:1103.4380 · Zbl 1406.42008
[7] Dutkay, D. E.; Jorgensen, P. E.T., Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z., 256, 801-823 (2007) · Zbl 1129.28006
[8] Erdös, P., On a family of symmetric Bernoulli convolutions, Amer. J. Math., 61, 974-975 (1939) · JFM 65.1308.01
[9] Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., 16, 101-121 (1974) · Zbl 0279.47014
[10] Garsia, A. M., Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc., 102, 409-432 (1962) · Zbl 0103.36502
[11] Hu, T.-Y.; Lau, K.-S., Spectral property of the Bernoulli convolutions, Adv. Math., 219, 554-567 (2008) · Zbl 1268.42044
[12] Iosevich, A.; Katz, N.; Tao, T., Convex bodies with a point of curvature do not admit exponential bases, Amer. J. Math., 123, 115-120 (2001) · Zbl 0998.42001
[13] Iosevich, A.; Katz, N.; Tao, T., Fuglede conjecture holds for convex planar domains, Math. Res. Lett., 10, 559-569 (2003) · Zbl 1087.42018
[14] Jorgensen, P. E.T.; Kornelson, K. A.; Shuman, K. L., Families of spectral sets for Bernoulli convolutions, J. Fourier Anal. Appl., 17, 431-456 (2011) · Zbl 1235.28008
[15] Jorgensen, P. E.T.; Pedersen, S., Dense analytic subspaces in fractal \(L^2\)-spaces, J. Anal. Math., 75, 185-228 (1998) · Zbl 0959.28008
[16] Kahane, J.-P., Sur la distribution de certaines séries aléatoires, (Colloque de Théorie des Nombres. Colloque de Théorie des Nombres, Mem. Soc. Math. France, vol. 25 (1971), Univ. Bordeaux: Univ. Bordeaux Bordeaux), 119-122, 1969 · Zbl 0234.60002
[17] Kolountzakis, M. N., Non-symmetric convex domains have no basis of exponentials, Illinois. J. Math., 44, 542-550 (2000) · Zbl 0972.52011
[18] Kolountzakis, M. N., The study of translational tiling with Fourier analysis, (Fourier Analysis and Convexity (2004), Birkhäuser), 131-187 · Zbl 1129.42401
[19] Kolountzakis, M. N.; Matolcsi, M., Tiles with no spectra, Forum Math., 18, 519-528 (2006) · Zbl 1130.42039
[20] Kolountzakis, M. N.; Matolcsi, M., Complex Hadamard matrices and the spectral set conjecture, Collect. Math., 281-291 (2006), vol. Extra · Zbl 1134.42313
[21] Lagarias, J. C.; Wang, Y., Spectral sets and factorizations of finite Abelian groups, J. Funct. Anal., 145, 73-98 (1997) · Zbl 0898.47002
[22] Matolcsi, M., Fuglede’s conjecture fails in dimension 4, Proc. Amer. Math. Soc., 133, 3021-3026 (2005) · Zbl 1087.42019
[23] Pedersen, S.; Wang, Y., Universal spectra, universal tiling sets and the spectral set conjecture, Math. Scand., 88, 246-256 (2001) · Zbl 1018.52018
[24] Peres, Y.; Schlag, W., Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions, Duke Math. J., 102, 193-251 (2000) · Zbl 0961.42007
[25] Peres, Y.; Schlag, W.; Solomyak, B., Sixty years of Bernoulli convolutions, (Bandt, C.; Graf, S.; Zahle, M., Fractal Geometry and Stochastics II (2000), Birkhauser), 39-65 · Zbl 0961.42006
[26] Salem, R., A remarkable class of algebraic integers, proof of a conjecture by Vijayaraghavan, Duke Math. J., 11, 103-108 (1944) · Zbl 0063.06657
[27] Solomyak, B., On the random series \(\sum \pm \lambda^n\) (an Erdös problem), Ann. of Math. (2), 142, 611-625 (1995) · Zbl 0837.28007
[28] Strichartz, R., Remarks on “dense analytic subspaces in fractal \(L^2\)-spaces” by P.E.T. Jorgensen and S. Pedersen, J. Anal. Math., 75, 229-231 (1998) · Zbl 0959.28009
[29] Strichartz, R., Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math., 81, 209-238 (2000) · Zbl 0976.42020
[30] Strichartz, R., Convergence of mock Fourier series, J. Anal. Math., 20, 333-353 (2006) · Zbl 1134.42308
[31] Tao, T., Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett., 11, 251-258 (2004) · Zbl 1092.42014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.