×

Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. (English) Zbl 0961.42007

The authors study the Bernoulli measure \(v_\lambda\), which is the probability distribution of the random series \(\sum_{n \geq 0} \pm \lambda^n\) for generic \(1/2 < \lambda < 1\). Specifically, they show that this measure is in the Sobolev space \(W^{s,2}\) for a.e. \(\lambda < 0.649\) such that \(\lambda^{1+2s} > 1/2\). Also, in the range \(\lambda > 1/2 + \varepsilon\), the dimension of the exceptional values of \(\lambda\) where the measure is singular is at most \(1-c\varepsilon\) for some absolute constant \(c>0\). Similar results are obtained for asymmetric Bernoulli convolutions and for variants such as {0,1,3} sets. Other results of the same flavor are obtained, e.g., for a set \(E\) in \(R^d\) of dimension at least 2, the orthogonal projection to a line has non-empty interior for all but an exceptional set of directions of dimension at most \(d+1- \dim(E)\). A similar result is obtained for the distance set between a Borel set of a certain dimension and a generic point. The results are obtained as part of a more systematic study of generic projections of a fixed large-dimensional set to a small-dimensional space under a map which depends on a certain number of parameters. Some general results for these problems are obtained.

MSC:

42A85 Convolution, factorization for one variable harmonic analysis
28A78 Hausdorff and packing measures
Full Text: DOI

References:

[1] P. Agarwal and J. Pach, Combinatorial Geometry , Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1995.
[2] J. C. Alexander and J. A. Yorke, Fat Baker’s transformations , Ergodic Theory Dynam. Systems 4 (1984), 1–23. · Zbl 0553.58020 · doi:10.1017/S0143385700002236
[3] J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis , Geom. Funct. Anal. 1 (1991), 147–187. · Zbl 0756.42014 · doi:10.1007/BF01896376
[4] –. –. –. –., Hausdorff dimension and distance sets , Israel J. Math. 87 (1994), 193–201. · Zbl 0807.28004 · doi:10.1007/BF02772994
[5] F. Chung, E. Szemerédi, and W. Trotter, The number of different distances determined by a set of points in the Euclidean plane , Discrete Comput. Geom. 7 (1992), 1–11. · Zbl 0755.52005 · doi:10.1007/BF02187820
[6] P. Erdős, On a family of symmetric Bernoulli convolutions , Amer. J. Math. 61 (1939), 974–976. JSTOR: · Zbl 0022.35402 · doi:10.2307/2371641
[7] –. –. –. –., On the smoothness properties of a family of Bernoulli convolutions , Amer. J. Math. 62 (1940), 180–186. JSTOR: · Zbl 0022.35403 · doi:10.2307/2371446
[8] K. J. Falconer, Continuity properties of \(k\)-plane integrals and Besicovitch sets , Math. Proc. Cambridge Philos. Soc. 87 (1980), 221–226. · Zbl 0438.42014 · doi:10.1017/S0305004100056681
[9] –. –. –. –., Hausdorff dimension and the exceptional set of projections , Mathematika 29 (1982), 109–115. · Zbl 0477.28004
[10] –. –. –. –., On the Hausdorff dimension of distance sets , Mathematika 32 (1985), 206–212. · Zbl 0605.28005
[11] ——–, The Geometry of Fractal Sets , Cambridge Tracts in Math. 85 , Cambridge University Press, Cambridge, 1986.
[12] –. –. –. –., The Hausdorff dimension of self-affine fractals , Math. Proc. Camb. Philos. Soc. 103 (1988), 339–350. · Zbl 0642.28005 · doi:10.1017/S0305004100064926
[13] M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces , CBMS Regional Conf. Ser. in Math. 79 , Conf. Board Math. Sci., Washington, Amer. Math. Soc., Providence, 1991. · Zbl 0757.42006
[14] D. Funaro, Polynomial Approximation of Differential Equations , Lecture Notes in Phys. New Ser. m Monogr. 8 , Springer-Verlag, Berlin, 1992. · Zbl 0774.41010
[15] A. M. Garsia, Arithmetic properties of Bernoulli convolutions , Trans. Amer. Math. Soc. 102 (1962), 409–432. JSTOR: · Zbl 0103.36502 · doi:10.2307/1993615
[16] X. Hu and S. J. Taylor, Fractal properties of products and projections of measures in \(\R^d\) , Math. Proc. Cambridge Philos. Soc. 115 (1994), 527–544. · Zbl 0810.28005 · doi:10.1017/S0305004100072285
[17] B. Hunt and V. Y. Kaloshin, How projections affect the dimension spectrum of fractal measures , Nonlinearity 10 (1997), 1031–1046. · Zbl 0903.28008 · doi:10.1088/0951-7715/10/5/002
[18] B. Hunt, T. D. Sauer, and J. A. Yorke, Prevalence: A translation-invariant “almost every” for infinite-dimensional spaces , Bull. Amer. Math. Soc. (N.S.) 27 (1992), 217–238.; Addendum , Bull. Amer. Math. Soc. (N.S.) 28 (1993), 306–307. · Zbl 0763.28009 · doi:10.1090/S0273-0979-1992-00328-2
[19] J. E. Hutchinson, Fractals and self-similarity , Indiana Univ. Math. J. 30 (1981), 713–747. · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[20] M. Jarvenpää, On the upper Minkowski dimension, the packing dimension, and orthogonal projections , Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 1994. · Zbl 0811.28003
[21] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function , Trans. Amer. Math. Soc. 38 (1935), 48–88. JSTOR: · Zbl 0014.15401 · doi:10.2307/1989728
[22] J. P. Kahane, “Sur la distribution de certaines séries aléatoires” in Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969) , Bull. Soc. Math. France 25 (1971), 119–122. · Zbl 0234.60002
[23] R. Kaufman, On Hausdorff dimension of projections , Mathematika 15 (1968), 153–155. · Zbl 0165.37404 · doi:10.1112/S0025579300002503
[24] –. –. –. –., An exceptional set for Hausdorff dimension , Mathematika 16 (1969), 57–58. · Zbl 0184.08102
[25] R. Kaufman and P. Mattila, Hausdorff dimension and exceptional sets of linear transformations , Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 387–392. · Zbl 0348.28020
[26] M. Keane, M. Smorodinsky, and B. Solomyak, On the morphology of \(\gamma\)-expansions with deleted digits , Trans. Amer. Math. Soc. 347 (1995), 955–966. JSTOR: · Zbl 0834.11033 · doi:10.2307/2154880
[27] F. Ledrappier, “On the dimension of some graphs” in Symbolic Dynamics and Its Applications (New Haven, Conn., 1991) , Contemp. Math. 135 , Amer. Math. Soc., Providence, 1992, 285–293. · Zbl 0767.28006
[28] J. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions , Proc. London Math. Soc. (3) 4 (1954), 257–302. · Zbl 0056.05504 · doi:10.1112/plms/s3-4.1.257
[29] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes , Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 227–244. · Zbl 0348.28019
[30] –. –. –. –., Orthogonal projections, Riesz capacities and Minkowski content . Indiana Univ. Math. J. 39 (1990), 185–198. · Zbl 0682.28003 · doi:10.1512/iumj.1990.39.39011
[31] ——–, Geometry of Sets and Measures in Euclidean Spaces , Cambridge Stud. Adv. Math. 44 , Cambridge University Press, Cambridge, 1995.
[32] P. Mattila and P. Sjölin, Regularity of distance measures and sets , · Zbl 1050.42009 · doi:10.1002/mana.19992040110
[33] Y. Peres, W. Schlag, and B. Solomyak, “Sixty years of Bernoulli convolutions” in Fractals and Stochastics, II, Proceedings of the Greifswald 1998 Conference , ed. Bandt, Graf, and Zähle, · Zbl 0961.42006
[34] Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof , Math. Res. Lett. 3 (1996), 231–239. · Zbl 0867.28001 · doi:10.4310/MRL.1996.v3.n2.a8
[35] –. –. –. –., Self-similar measures and intersections of Cantor sets , Trans. Amer. Math. Soc. 350 (1998), 4065–4087. JSTOR: · Zbl 0912.28005 · doi:10.1090/S0002-9947-98-02292-2
[36] M. Pollicott and K. Simon, The Hausdorff dimension of \(\lambda\)-expansions with deleted digits , Trans. Amer. Math. Soc. 347 (1995), 967–983. JSTOR: · Zbl 0831.28005 · doi:10.2307/2154881
[37] F. Przytycki and M. Urbansky, On Hausdorff dimension of some fractal sets , Studia Math. 93 (1989), 155–186. · Zbl 0691.58029
[38] T. D. Sauer and J. A. Yorke, Are the dimensions of a set and its image equal under typical smooth functions? Ergodic Theory Dynam. Systems 17 (1997), 941–956. · Zbl 0884.28006 · doi:10.1017/S0143385797086252
[39] B. Solomyak, On the random series \(\sum\pm\lambda^n\) (an Erdős problem), Ann. of Math. (2) 142 (1995), 611–625. JSTOR: · Zbl 0837.28007 · doi:10.2307/2118556
[40] –. –. –. –., On the measure of arithmetic sums of Cantor sets , Indag. Math. (N.S.) 8 (1997), 133–141. · Zbl 0876.28015 · doi:10.1016/S0019-3577(97)83357-5
[41] –. –. –. –., Measure and dimension for some fractal families , Math. Proc. Cambridge Philos. Soc. 124 (1998), 531–546. · Zbl 0927.28006 · doi:10.1017/S0305004198002680
[42] E. Stein, Singular integrals and differentiability properties of functions , Princeton Math. Ser. 30 , Princeton University Press, Princeton, 1970. · Zbl 0207.13501
[43] ——–, Harmonic Analysis, Princeton University Press, Princeton, 1993. · Zbl 0793.42020
[44] T. Wolff, A Kakeya type problem for circles , Amer. J. Math. 119 (1997), 985–1026. · Zbl 0892.52003 · doi:10.1353/ajm.1997.0034
[45] ——–, “Recent work connected with the Kakeya problem” in Prospects in Mathematics (Princeton, NJ, 1996), Amer. Math. Soc., Providence, 1999. · Zbl 0934.42014
[46] –. –. –. –., Decay of circular means of Fourier transforms of measures. Preprint (1999). To appear in Internat. Math. Res. Notices 1999 , 547–567. · Zbl 0930.42006 · doi:10.1155/S1073792899000288
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.