×

Approximate \(l\)-states of the Manning-Rosen potential by using Nikiforov-Uvarov method. (English) Zbl 1244.81019

Summary: The approximately analytical bound state solutions of the \(l\)-wave Schrödinger equation for the Manning-Rosen (MR) potential are carried out by a proper approximation to the centrifugal term. The energy spectrum formula and normalized wave functions expressed in terms of the Jacobi polynomials are both obtained for the application of the Nikiforov-Uvarov (NU) method to the Manning-Rosen potential. To show the accuracy of our results, we calculate the eigenvalues numerically for arbitrary principal and orbital quantum numbers \(n\) and \(l\) with two different values of the potential screening parameter \(a\). It is found that our results are in good agreement with the those obtained by other methods for short potential range, lowest values of orbital quantum number \(l\), and \(a\). Two special cases of much interest are investigated like the \(s\)-wave case and Hulthén potential case.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)

References:

[1] L. I. Schiff, Quantum Mechanics, McGraw-Hill, New York, NY, USA, 3rd edition, 1968.
[2] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, Pergamon, New York, NY, USA, 3rd edition, 1977. · Zbl 0178.57901
[3] M. M. Neito, “Hydrogen atom and relativistic pi-mesic atom in N-space dimensions,” American Journal of Physics, vol. 47, p. 1067, 1979.
[4] S. Erko\cc and R. Sever, “Path-integral solution for a Mie-type potential,” Physical Review D, vol. 30, no. 10, pp. 2117-2120, 1984. · doi:10.1103/PhysRevD.30.2117
[5] S. Erko\cc and R. Sever, “1/N expansion for a Mie-type potential,” Physical Review D, vol. 33, no. 2, pp. 588-589, 1986. · doi:10.1103/PhysRevD.33.588
[6] M. L. Sage, “The vibrations and rotations of the pseudogaussian oscillator,” Chemical Physics, vol. 87, no. 3, pp. 431-439, 1984.
[7] M. Sage and J. Goodisman, “Improving on the conventional presentation of molecular vibrations: advantages of the pseudoharmonic potential and the direct construction of potential energy curves,” American Journal of Physics, vol. 53, no. 4, pp. 350-355, 1985.
[8] S.-H. Dong, “The realization of dynamical group for the pseudoharmonic oscillator,” Applied Mathematical Letters, vol. 16, no. 2, p. 199, 2003. · Zbl 1042.81036 · doi:10.1016/S0893-9659(03)80032-0
[9] S. Ikhdair and R. Sever, “Exact polynomial eigensolutions of the Schrödinger equation for the pseudoharmonic potential,” Journal of Molecular Structure, vol. 806, no. 1-3, pp. 155-158, 2007. · doi:10.1016/j.theochem.2006.11.019
[10] S. M. Ikhdair and R. Sever, “Polynomial solutions of the Mie-type potential in the D-dimensional Schrödinger equation,” Journal of Molecular Structure, vol. 855, no. 1-3, pp. 13-17, 2008. · doi:10.1016/j.theochem.2007.12.044
[11] C. L. Pekeris, “The rotation-vibration coupling in diatomic molecules,” Physical Review, vol. 45, no. 2, pp. 98-103, 1934. · JFM 60.0780.04 · doi:10.1103/PhysRev.45.98
[12] C. Berkdemir, “Pseudospin symmetry in the relativistic Morse potential including the spin-orbit coupling term,” Nuclear Physics A, vol. 770, no. 1-2, pp. 32-39, 2006. · doi:10.1016/j.nuclphysa.2006.03.001
[13] W. C. Qiang and S. H. Dong, “Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method,” Physics Letters A, vol. 363, no. 3, pp. 169-176, 2007. · Zbl 1197.81128 · doi:10.1016/j.physleta.2006.10.091
[14] C. Berkdemir and J. Han, “Any l-state solutions of the Morse potential through the Pekeris approximation and Nikiforov-Uvarov method,” Chemical Physics Letters, vol. 409, no. 4-6, pp. 203-207, 2005. · doi:10.1016/j.cplett.2005.05.021
[15] G. F. Wei, C. Y. Long, and S. H. Dong, “The scattering of the Manning-Rosen potential with centrifugal term,” Physics Letters A, vol. 372, no. 15, pp. 2592-2596, 2008. · Zbl 1220.81099 · doi:10.1016/j.physleta.2007.12.042
[16] C. Berkdemir, A. Berkdemir, and J. Han, “Bound state solutions of the Schrödinger equation for modified Kratzer’s molecular potential,” Chemical Physics Letters, vol. 417, no. 4-6, pp. 326-329, 2006. · doi:10.1016/j.cplett.2005.10.039
[17] S. M. Ikhdair, C. Berkdemir, and R. Sever, “Spin and pseudospin symmetry along with orbital dependency of the Dirac-Hulthén problem,” Applied Mathematics and Computation, vol. 217, no. 22, pp. 9019-9032, 2011. · Zbl 1217.81056 · doi:10.1016/j.amc.2011.03.109
[18] S. M. Ikhdair, “An approximate \kappa state solutions of the Dirac equation for the generalized Morse potential under spin and pseudospin symmetry,” Journal of Mathematical Physics, vol. 52, no. 5, article 052303, 2011. · Zbl 1317.81105 · doi:10.1063/1.3583553
[19] R. L. Greene and C. Aldrich, “Variational wave functions for a screened Coulomb potential,” Physical Review A, vol. 14, no. 6, pp. 2363-2366, 1976. · doi:10.1103/PhysRevA.14.2363
[20] S. M. Ikhdair and R. Sever, “Relativistic and nonrelativistic bound states of the isotonic oscillator by Nikiforov-Uvarov method,” Journal of Mathematical Physics, vol. 52, no. 12, article 122108, 2011. · Zbl 1273.81071
[21] S. M. Ikhdair, “Effective Schr?dinger equation with general ordering ambiguity position-dependent mass Morse potential,” Molecular Physics. In press. · doi:10.1080/00268976.2012.656148
[22] S. M. Ikhdair, “Approximate K-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry,” Central European Journal of Physics, vol. 10, no. 2, 2012. · Zbl 1247.81115 · doi:10.2478/s11534-011-0121-5
[23] A. Diaf and A. Chouchaoui, “L-states of the Manning-Rosen potential with an improved approximate scheme and Feynman path integral formalism,” Physica Scripta, vol. 84, no. 1, 2011. · Zbl 1221.81077 · doi:10.1088/0031-8949/84/01/015004
[24] P. M. Morse, “Diatomic molecules according to the wave mechanics. II. Vibrational levels,” Physical Review, vol. 34, no. 1, pp. 57-64, 1929. · JFM 55.0539.02 · doi:10.1103/PhysRev.34.57
[25] S. M. Ikhdair and R. Sever, “Approximate eigenvalue and eigenfunction solutions for the generalized hulthén potential with any angular momentum,” Journal of Mathematical Chemistry, vol. 42, no. 3, pp. 461-471, 2007. · Zbl 1132.81352 · doi:10.1007/s10910-006-9115-8
[26] S. M. Ikhdair, “Bound states of the klein-gordon equation for vector and scalar general hulthén-type potentials in D-dimension,” International Journal of Modern Physics C, vol. 20, no. 1, pp. 25-45, 2009. · Zbl 1155.81323 · doi:10.1142/S0129183109013431
[27] S. M. Ikhdair and R. Sever, Journal of Physics A, vol. 44, article 345301, 2011. · Zbl 1273.81071
[28] B. Gönül and I. Zorba, “Supersymmetric solutions of non-central potentials,” Physics Letters A, vol. 269, no. 2-3, pp. 83-88, 2000. · Zbl 1115.81394 · doi:10.1016/S0375-9601(00)00252-8
[29] L. Hulthén, Ark. Mat. Astron. Fys., vol. A28, p. 5, 1942.
[30] Ö Ye\csilta\cs, “PT/non-PT symmetric and non-Hermitian Pöschl-Teller-like solvable potentials via Nikiforov-Uvarov method,” Physica Scripta, vol. 75, no. 1, 2007. · Zbl 1118.81501 · doi:10.1088/0031-8949/75/1/006
[31] S. M. Ikhdair and R. Sever, “Exact solution of the Klein-Gordon equation for the PT-symmetric generalized Woods-Saxon potential by the Nikiforov-Uvarov method,” Annalen der Physik, vol. 16, no. 3, pp. 218-232, 2007. · Zbl 1114.81029 · doi:10.1002/andp.200610232
[32] S. M. Ikhdair and R. Sever, “Approximate l-state solutions of the D-dimensional Schrödinger equation for Manning-Rosen potential,” Annalen der Physik, vol. 17, no. 11, pp. 897-910, 2008. · Zbl 1152.81019 · doi:10.1002/andp.200810322
[33] S. M. Ikhdair and R. Sever, “Exact polynomial solution of PT-/Non-PT-Symmetric and non-Hermitian modified Woods-Saxon potential by the Nikiforov-Uvarov method,” International Journal of Theoretical Physics, vol. 46, no. 6, pp. 1643-1665, 2007. · Zbl 1118.81024 · doi:10.1007/s10773-006-9317-7
[34] S. M. Ikhdair and R. Sever, “Approximate analytical solutions of the generalized Woods-Saxon potentials including the spin-orbit coupling term and spin symmetry,” Central European Journal of Physics, vol. 8, no. 4, pp. 652-666, 2010. · doi:10.2478/s11534-009-0118-5
[35] C. Berkdemir, “Relativistic treatment of a spin-zero particle subject to a Kratzer-type potential,” American Journal of Physics, vol. 75, no. 1, pp. 81-86, 2007. · Zbl 1219.81095 · doi:10.1119/1.2360992
[36] S. M. Ikhdair and R. Sever, “Exact bound states of the D-dimensional Klein-Gordon equation with equal scalar and vector ring-shaped pseudoharmonic potential,” International Journal of Modern Physics C, vol. 19, no. 9, pp. 1425-1442, 2008. · Zbl 1154.81331 · doi:10.1142/S0129183108012923
[37] Y.-F. Cheng and T.-Q. Dai, “Exact solution of the Schrödinger equation for the modified Kratzer potential plus a ring-shaped potential by the Nikiforov-Uvarov method,” Physica Scripta, vol. 75, no. 3, pp. 274-277, 2007. · Zbl 1111.81043 · doi:10.1088/0031-8949/75/3/008
[38] Y.-F. Cheng and T.-Q. Dai, “Exact solutions of the Klein-Gordon equation with a ring-shaped modified Kratzer potential,” Chinese Journal of Physics, vol. 45, no. 5, pp. 480-487, 2007.
[39] S. M. Ikhdair, “Exact solutions of the D-dimensional Schrödinger equation for a pseudo-Coulomb potential plus ring-shaped potential,” Chinese Journal of Physics, vol. 46, no. 3, pp. 291-306, 2008.
[40] S. M. Ikhdair and R. Sever, “An alternative simple solution of the sextic anharmonic oscillator and perturbed coulomb problems,” International Journal of Modern Physics C, vol. 18, no. 10, pp. 1571-1581, 2007. · Zbl 1200.82030 · doi:10.1142/S0129183107011583
[41] S. M. Ikhdair and R. Sever, “Exact solutions of the modified kratzer potential plus ring-shaped potential in the D-dimensional Schrödinger equation by the nikiforovuvarov method,” International Journal of Modern Physics C, vol. 19, no. 2, pp. 221-235, 2008. · Zbl 1155.81324 · doi:10.1142/S0129183108012030
[42] S. M. Ikhdair and R. Sever, “Exact solutions of the radial Schrödinger equation for some physical potentials,” Central European Journal of Physics, vol. 5, no. 4, pp. 516-527, 2007. · doi:10.2478/s11534-007-0022-9
[43] S. M. Ikhdair and R. Sever, “On solutions of the Schrödinger equation for some molecular potentials: wave function ansatz,” Central European Journal of Physics, vol. 6, no. 3, pp. 697-703, 2008. · doi:10.2478/s11534-008-0060-y
[44] W.-C. Qiang, “Bound states of the Klein-Gordon and Dirac equations for potential V(r) = Ar - 2-Br - 1,” Chinese Physics, vol. 12, no. 10, pp. 1054-1057, 2003. · doi:10.1088/1009-1963/12/10/302
[45] S. M. Ikhdair, “Approximate solutions of the Dirac equation for the rosen-morse potential including the Spin-orbit centrifugal term,” Journal of Mathematical Physics, vol. 51, no. 2, Article ID 026002JMP, pp. 1-16, 2010. · Zbl 1309.81076 · doi:10.1063/1.3293759
[46] N. Rosen and P. M. Morse, “On the vibrations of polyatomic molecules,” Physical Review, vol. 42, no. 2, pp. 210-217, 1932. · JFM 58.1361.05 · doi:10.1103/PhysRev.42.210
[47] M. F. Manning, “Minutes of the Middletown meeting, October 14, 1933,” Physical Review, vol. 44, no. 11, pp. 951-954, 1933.
[48] M. F. Manning and N. Rosen, Physical Review, vol. 44, p. 953, 1933.
[49] A. Diaf, A. Chouchaoui, and R. J. Lombard, “Feynman integral treatment of the Bargmann potential,” Annals of Physics, vol. 317, no. 2, pp. 354-365, 2005. · Zbl 1139.81366 · doi:10.1016/j.aop.2004.11.010
[50] S.-H. Dong and J. García-Ravelo, “Exact solutions of the s-wave Schrödinger equation with Manning-Rosen potential,” Physica Scripta, vol. 75, no. 3, pp. 307-309, 2007. · Zbl 1111.81044 · doi:10.1088/0031-8949/75/3/013
[51] W. C. Qiang and S. H. Dong, “Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal term,” Physics Letters A, vol. 368, no. 1-2, pp. 13-17, 2007. · Zbl 1209.81107 · doi:10.1016/j.physleta.2007.03.057
[52] S. M. Ikhdair and R. Sever, “Approximate l-state solutions of the D-dimensional Schrödinger equation for Manning-Rosen potential,” Annalen der Physik, vol. 17, no. 11, pp. 897-910, 2008. · Zbl 1152.81019 · doi:10.1002/andp.200810322
[53] H. Egrifes, D. Demirhan, and F. Büyükkilic, “Exact solutions of the Schrodinger equation for the deformed hyperbolic potential well and the deformed four-parameter exponential type potential,” Physics Letters A, vol. 275, no. 4, pp. 229-237, 2000. · Zbl 1115.81332 · doi:10.1016/S0375-9601(00)00592-2
[54] C.-S. Jia, Y.-F. Diao, M. Li, Q.-B. Yang, L.-T. Sun, and R.-Y. Huang, “Mapping of the five-parameter exponential-type potential model into trigonometric-type potentials,” Journal of Physics A, vol. 37, no. 46, pp. 11275-11284, 2004. · Zbl 1073.81560 · doi:10.1088/0305-4470/37/46/012
[55] D. A. Morales, “Supersymmetric improvement of the Pekeris approximation for the rotating Morse potential,” Chemical Physics Letters, vol. 394, no. 1-3, pp. 68-75, 2004. · doi:10.1016/j.cplett.2004.06.109
[56] E. D. Filho and R. M. Ricotta, “Morse potential energy spectra through the variational method and supersymmetry,” Physics Letters A, vol. 269, no. 5-6, pp. 269-276, 2000. · Zbl 1115.81348 · doi:10.1016/S0375-9601(00)00267-X
[57] O. Bayrak, I. Boztosun, and H. Ciftci, “Exact analytical solutions to the kratzer potential by the asymptotic iteration method,” International Journal of Quantum Chemistry, vol. 107, no. 3, pp. 540-544, 2007. · doi:10.1002/qua.21141
[58] O. Bayrak and I. Boztosun, “Arbitrary \ell -state solutions of the rotating Morse potential by the asymptotic iteration method,” Journal of Physics A, vol. 39, no. 22, pp. 6955-6963, 2006. · Zbl 1092.81012 · doi:10.1088/0305-4470/39/22/010
[59] Z.-Q. Ma and B.-W. Xu, “Quantum correction in exact quantization rules,” Europhysics Letters, vol. 69, no. 5, pp. 685-691, 2005. · doi:10.1209/epl/i2004-10418-8
[60] S. M. Ikhdair and R. Sever, “Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules,” Journal of Mathematical Chemistry, vol. 45, no. 4, pp. 1137-1152, 2009. · Zbl 1198.81217 · doi:10.1007/s10910-008-9438-8
[61] S. M. Ikhdair, “Quantization rule solution to the Hulthén potential in arbitrary dimension with a new approximate scheme for the centrifugal term,” Physica Scripta, vol. 83, no. 2, 2011. · Zbl 1219.81106 · doi:10.1088/0031-8949/83/02/025002
[62] S.-H. Dong, D. Morales, and J. García-Ravelo, “Exact quantization rule and its applications to physical potentials,” International Journal of Modern Physics E, vol. 16, no. 1, pp. 189-198, 2007. · doi:10.1142/S0218301307005661
[63] J. P. Killingbeck, A. Grosjean, and G. Jolicard, “The Morse potential with angular momentum,” Journal of Chemical Physics, vol. 116, no. 1, pp. 447-448, 2002. · doi:10.1063/1.1418745
[64] S. M. Ikhdair and R. Sever, “Nonrelativistic quarkantiquark potential: spectroscopy of heavy-quarkonia and exotic susy quarkonia,” International Journal of Modern Physics A, vol. 24, no. 28-29, pp. 5341-5362, 2009. · Zbl 1179.81184 · doi:10.1142/S0217751X09045868
[65] S. M. Ikhdair and R. Sever, “Heavy-quark bound states in potentials with the Bethe-Salpeter equation,” Zeitschrift für Physik C, vol. 56, no. 1, pp. 155-160, 1992. · doi:10.1007/BF01589718
[66] S. M. Ikhdair and R. Sever, “Bethe-Salpeter equation for non-self conjugate mesons in a power-law potential,” Zeitschrift für Physik C Particles and Fields, vol. 58, no. 1, pp. 153-157, 1993. · doi:10.1007/BF01554088
[67] S. M. Ikhdair and R. Sever, “Bound state energies for the exponential cosine screened Coulomb potential,” Zeitschrift für Physik D Atoms, Molecules and Clusters, vol. 28, no. 1, pp. 1-5, 1993. · Zbl 1127.81010 · doi:10.1007/BF01437449
[68] S. M. Ikhdair and R. Sever, “Bc meson spectrum and hyperfine splittings in the shifted large-N-expansion technique,” International Journal of Modern Physics A, vol. 18, no. 23, pp. 4215-4231, 2003. · Zbl 1034.81532 · doi:10.1142/S0217751X03015088
[69] S. M. Ikhdair and R. Sever, “Spectroscopy of Bc meson in a semi-relativistic quark model using the shifted large-N expansion method,” International Journal of Modern Physics A, vol. 19, no. 11, pp. 1771-1791, 2004. · doi:10.1142/S0217751X0401780X
[70] S. M. Ikhdair and R. Sever, “Bc and heavy meson spectroscopy in the local approximation of the Schrödinger equation with relativistic kinematics,” International Journal of Modern Physics A, vol. 20, no. 17, pp. 4035-4054, 2005. · doi:10.1142/S0217751X05022275
[71] S. M. Ikhdair and R. Sever, “Mass spectra of heavy quarkonia and Bc decay constant for static scalar-vector interactions with relativistic kinematics,” International Journal of Modern Physics A, vol. 20, no. 28, pp. 6509-6531, 2005. · Zbl 1077.81533 · doi:10.1142/S0217751X05021294
[72] S. M. Ikhdair and R. Sever, “Bound energy masses of mesons containing the fourth generation and iso-singlet quarks,” International Journal of Modern Physics A, vol. 21, no. 10, pp. 2191-2199, 2006. · doi:10.1142/S0217751X06031636
[73] S. M. Ikhdair and R. Sever, “A systematic study on nonrelativistic quarkonium interaction,” International Journal of Modern Physics A, vol. 21, no. 19-20, pp. 3989-4002, 2006. · Zbl 1102.81318 · doi:10.1142/S0217751X06030953
[74] S. M. Ikhdair and R. Sever, “Calculation of the Bc leptonic decay constant using the shifted N-expansion method,” International Journal of Modern Physics A, vol. 21, no. 32, pp. 6699-6714, 2006. · Zbl 1110.81160 · doi:10.1142/S0217751X06034100
[75] S. M. Ikhdair and R. Sever, “Bc spectroscopy in the shifted l-expansion technique,” International Journal of Modern Physics E, vol. 17, no. 4, pp. 669-691, 2008. · doi:10.1142/S0218301308010076
[76] M. Bag, M. M. Panja, R. Dutt, and Y. P. Varshni, “Modified shifted large-N approach to the Morse oscillator,” Physical Review A, vol. 46, no. 9, pp. 6059-6062, 1992. · doi:10.1103/PhysRevA.46.6059
[77] J. Yu, S. H. Dong, and G. H. Sun, “Series solutions of the Schrödinger equation with position-dependent mass for the Morse potential,” Physics Letters A, vol. 322, no. 5-6, pp. 290-297, 2004. · Zbl 1118.81469 · doi:10.1016/j.physleta.2004.01.039
[78] R. L. Hall and N. Saad, “Smooth transformations of Kratzer’s potential in N dimensions,” Journal of Chemical Physics, vol. 109, no. 8, pp. 2983-2986, 1998. · doi:10.1063/1.476889
[79] M. R. Setare and E. Karimi, “Algebraic approach to the Kratzer potential,” Physica Scripta, vol. 75, no. 1, article 015, pp. 90-93, 2007. · Zbl 1118.81538 · doi:10.1088/0031-8949/75/1/015
[80] B. Gönül, “Exact treatment of \ell \neq 0 states,” Chinese Physics Letters, vol. 21, no. 9, pp. 1685-1688, 2004. · doi:10.1088/0256-307X/21/9/002
[81] B. Gönül, “Generalized supersymmetric perturbation theory,” Chinese Physics Letters, vol. 21, no. 12, pp. 2330-2333, 2004. · doi:10.1088/0256-307X/21/12/003
[82] B. Gönül, K. Köksal, and E. Bakir, “An alternative treatment for Yukawa-type potentials,” Physica Scripta, vol. 73, no. 3, pp. 279-283, 2006. · doi:10.1088/0031-8949/73/3/007
[83] S. M. Ikhdair and R. Sever, “Bound energy for the exponential-cosine-screened coulomb potential,” Journal of Mathematical Chemistry, vol. 41, no. 4, pp. 329-341, 2007. · Zbl 1127.81010 · doi:10.1007/s10910-006-9080-2
[84] S. M. Ikhdair and R. Sever, “Bound states of a more general exponential screened Coulomb potential,” Journal of Mathematical Chemistry, vol. 41, no. 4, pp. 343-353, 2007. · Zbl 1127.81011 · doi:10.1007/s10910-007-9226-x
[85] S. M. Ikhdair and R. Sever, “A perturbative treatment for the bound states of the Hellmann potential,” Journal of Molecular Structure, vol. 809, no. 1-3, pp. 103-113, 2007. · doi:10.1016/j.theochem.2007.01.019
[86] C. Berkdemir, A. Berkdemir, and R. Sever, “Systematical approach to the exact solution of the Dirac equation for a deformed form of the Woods-Saxon potential,” Journal of Physics A, vol. 39, no. 43, article 005, pp. 13455-13463, 2006. · Zbl 1105.81027 · doi:10.1088/0305-4470/39/43/005
[87] S. M. Ikhdair, “Exact Klein-Gordon equation with spatially dependent masses for unequal scalar-vector Coulomb-like potentials,” European Physical Journal A, vol. 40, no. 2, pp. 143-149, 2009. · doi:10.1140/epja/i2009-10758-9
[88] S. M. Ikhdair, “Bound states of the Klein-Gordon equation in D-dimensions with some physical scalar and vector exponential-type potentials including orbital centrifugal term,” Journal of Quantum Information Science, vol. 1, no. 2, pp. 73-86, 2011.
[89] S. M. Ikhdair and R. Sever, “Any/state improved quasi-exact analytical solutions of the spatially dependent mass Klein-Gordon equation for the scalar and vector Hulthén potentials,” Physica Scripta, vol. 79, no. 3, article 035002, 2009. · Zbl 1170.81360 · doi:10.1088/0031-8949/79/03/035002
[90] S. M. Ikhdair and R. Sever, “Polynomial solution of non-central potentials,” International Journal of Theoretical Physics, vol. 46, no. 10, pp. 2384-2395, 2007. · Zbl 1133.81017 · doi:10.1007/s10773-007-9356-8
[91] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel, Switzerland, 1988. · Zbl 0624.33001
[92] S. M. Ikhdair and R. Sever, “Two approximation schemes to the bound states of the Dirac-Hulthen problem,” Journal of Physics A, vol. 44, article 345301, 2011. · Zbl 1227.81160 · doi:10.1088/1751-8113/44/35/355301
[93] R. J. Leroy and R. B. Bernstein, “Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels,” The Journal of Chemical Physics, vol. 52, no. 8, pp. 3869-3879, 1970.
[94] J. M. Cai, P. Y. Cai, and A. Inomata, “Path-integral treatment of the Hulthén potential,” Physical Review A, vol. 34, no. 6, pp. 4621-4628, 1986. · doi:10.1103/PhysRevA.34.4621
[95] W. Lucha and F. F. Schöberl, “Solving the Schrödinger equation for bound states with mathematica 3.0,” International Journal of Modern Physics C, vol. 10, no. 4, pp. 607-619, 1999. · Zbl 0948.81505
[96] S. M. Ikhdair, “An approximate \kappa state solutions of the Dirac equation for the generalized Morse potential under spin and pseudospin symmetry,” Journal of Mathematical Physics, vol. 52, no. 5, article 052303, 2011. · Zbl 1317.81105 · doi:10.1063/1.3583553
[97] S. M. Ikhdair and R. Sever, Journal of Physics A, vol. 44, articlee 345301, 2011. · Zbl 1273.81071
[98] S. M. Ikhdair, C. Berkdemir, and R. Sever, “Spin and pseudospin symmetry along with orbital dependency of the Dirac-Hulthén problem,” Applied Mathematics and Computation, vol. 217, no. 22, pp. 9019-9032, 2011. · Zbl 1217.81056 · doi:10.1016/j.amc.2011.03.109
[99] S. M. Ikhdair, “An improved approximation scheme for the centrifugal term and the Hulthén potential,” European Physical Journal A, vol. 39, no. 3, pp. 307-314, 2009. · doi:10.1140/epja/i2008-10715-2
[100] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, USA, 1964. · Zbl 0171.38503
[101] G. Sezgo, Orthogonal Polynomials, American Mathematical Society, New York, NY, USA, 1939.
[102] N. N. Lebedev, Special Functions and Their Applications, Prentice Hall, Englewood Cliffs, NJ, USA, 1965. · Zbl 0131.07002
[103] R. Dutt, K. Chowdhury, and Y. P. Varshni, “An improved calculation for screened Coulomb potentials in Rayleigh-Schrodinger perturbation theory,” Journal of Physics A, vol. 18, no. 9, article 020, pp. 1379-1388, 1985. · doi:10.1088/0305-4470/18/9/020
[104] T. Xu, Z.-Q. Cao, Y.-C. Ou, Q.-S. Shen, and G.-L. Zhu, “Critical radius and dipole polarizability for a confined system,” Chinese Physics, vol. 15, no. 6, pp. 1172-1176, 2006. · doi:10.1088/1009-1963/15/6/008
[105] T. Tietz, “Diamagnetic susceptibility in Thomas-Fermi model for latter’s and Byatt’s effective charge distribution,” The Journal of Chemical Physics, vol. 35, no. 5, pp. 1916-1917, 1961.
[106] K. Szalcwicz and H. J. Mokhorst, The Journal of Chemical Physics, vol. 75, p. 5785, 1981.
[107] G. Malli, “Molecular integrals involving hulthén-type functions (n = l STO) in relativistic quantum chemistry,” Chemical Physics Letters, vol. 78, no. 3, pp. 578-580, 1981.
[108] J. Lindhard and P. G. Hansen, “Atomic effects in low-energy beta decay: the case of tritium,” Physical Review Letters, vol. 57, no. 8, pp. 965-967, 1986. · doi:10.1103/PhysRevLett.57.965
[109] I. S. Bitensky, V. K. Ferleger, and I. A. Wojciechowski, “Distortion of H2 potentials by embedding into an electron gas at molecule scattering by a metal surface,” Nuclear Instruments and Methods in Physics Research B, vol. 125, no. 1-4, pp. 201-206, 1997.
[110] C.-S. Jia, J.-Y. Wang, S. He, and L.-T. Sun, “Shape invariance and the supersymmetry WKB approximation for a diatomic molecule potential,” Journal of Physics A, vol. 33, no. 39, pp. 6993-6998, 2000. · Zbl 0963.81076 · doi:10.1088/0305-4470/33/39/313
[111] P. Pyykkö and J. Jokisaari, “Spectral density analysis of nuclear spin-spin coupling. I. A Hulthén potential LCAO model for JX-H in hydrides XH4,” Chemical Physics, vol. 10, no. 2-3, pp. 293-301, 1975.
[112] J. A. Olson and D. A. Micha, “Transition operators for atom-atom potentials: the Hilbert-Schmidt expansion,” The Journal of Chemical Physics, vol. 68, no. 10, pp. 4352-4356, 1978.
[113] A. D. Alhaidari, “Dirac equation with coupling to 1/r singular vector potentials for all angular momenta,” Foundations of Physics, vol. 40, no. 8, pp. 1088-1095, 2010. · Zbl 1197.81112 · doi:10.1007/s10701-010-9431-5
[114] J. Stanek, “Approximate analytical solutions for arbitrary l-state of the Hulthén potential with an improved approximation of the centrifugal term,” Central European Journal of Chemistry, vol. 9, no. 4, pp. 737-742, 2011. · doi:10.2478/s11532-011-0050-6
[115] S. M. Ikhdair, “On the bound-state solutions of the Manning-Rosen potential including an improved approximation to the orbital centrifugal term,” Physica Scripta, vol. 83, no. 1, 2011. · Zbl 1217.81055 · doi:10.1088/0031-8949/83/01/015010
[116] M. Badawi, N. Bessis, and G. Bessis, “On the introduction of the rotation-vibration coupling in diatomic molecules and the factorization method,” Journal of Physics B, vol. 5, no. 8, Article ID 004, pp. L157-L159, 1972. · doi:10.1088/0022-3700/5/8/004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.