×

Uncertainty relation for the discrete Fourier transform. (English) Zbl 1228.81192

Summary: We derive an uncertainty relation for two unitary operators which obey a commutation relation of the form \(UV=e^{i\phi}VU\). Its most important application is to constrain how much a quantum state can be localized simultaneously in two mutually unbiased bases related by a discrete Fourier transform. It provides an uncertainty relation which smoothly interpolates between the well-known cases of the Pauli operators in two dimensions and the continuous position and momentum variables. This work also provides an uncertainty relation for modular variables, and could find applications in signal processing. In the finite-dimensional case the minimum uncertainty states, discrete analogues of coherent and squeezed states, are minimum energy solutions of Harper’s equation, a discrete version of the harmonic oscillator equation.

MSC:

81S05 Commutation relations and statistics as related to quantum mechanics (general)
65T50 Numerical methods for discrete and fast Fourier transforms

References:

[1] DOI: 10.1007/BF01397280 · doi:10.1007/BF01397280
[2] , in: Quantum Theory and Measurement (1983)
[3] DOI: 10.1007/BF01391200 · doi:10.1007/BF01391200
[4] DOI: 10.1103/PhysRev.34.163 · doi:10.1103/PhysRev.34.163
[5] DOI: 10.1103/RevModPhys.40.411 · doi:10.1103/RevModPhys.40.411
[6] DOI: 10.1016/0375-9601(88)90114-4 · doi:10.1016/0375-9601(88)90114-4
[7] DOI: 10.1103/PhysRevA.51.54 · doi:10.1103/PhysRevA.51.54
[8] DOI: 10.1103/PhysRevA.64.042113 · doi:10.1103/PhysRevA.64.042113
[9] DOI: 10.1103/PhysRevLett.91.037901 · doi:10.1103/PhysRevLett.91.037901
[10] DOI: 10.1007/BF01608825 · doi:10.1007/BF01608825
[11] DOI: 10.1103/PhysRevLett.50.631 · doi:10.1103/PhysRevLett.50.631
[12] DOI: 10.1103/PhysRevD.35.3070 · doi:10.1103/PhysRevD.35.3070
[13] DOI: 10.1103/PhysRevLett.60.1103 · doi:10.1103/PhysRevLett.60.1103
[14] DOI: 10.1088/0305-4470/28/23/034 · Zbl 0879.46044 · doi:10.1088/0305-4470/28/23/034
[15] DOI: 10.1088/0305-4470/33/11/304 · Zbl 0991.39007 · doi:10.1088/0305-4470/33/11/304
[16] DOI: 10.1088/0370-1298/68/10/304 · Zbl 0065.23708 · doi:10.1088/0370-1298/68/10/304
[17] DOI: 10.1103/PhysRevLett.85.3313 · Zbl 1369.81026 · doi:10.1103/PhysRevLett.85.3313
[18] DOI: 10.1103/PhysRevLett.88.127902 · doi:10.1103/PhysRevLett.88.127902
[19] DOI: 10.1103/PhysRevLett.92.067902 · doi:10.1103/PhysRevLett.92.067902
[20] DOI: 10.1103/PhysRevLett.97.250501 · Zbl 1228.81098 · doi:10.1103/PhysRevLett.97.250501
[21] DOI: 10.1209/0295-5075/6/6/002 · doi:10.1209/0295-5075/6/6/002
[22] DOI: 10.1103/PhysRevA.39.1665 · doi:10.1103/PhysRevA.39.1665
[23] A. Bandilla, Ann. Phys. (Leipzig) 23 pp 323– (1969) ISSN: http://id.crossref.org/issn/0003-3804 · doi:10.1002/andp.19694780704
[24] DOI: 10.1088/0031-8949/1993/T48/017 · doi:10.1088/0031-8949/1993/T48/017
[25] DOI: 10.1007/BF00670008 · doi:10.1007/BF00670008
[26] DOI: 10.1103/PhysRevA.52.2419 · doi:10.1103/PhysRevA.52.2419
[27] DOI: 10.1103/PhysRevA.53.3822 · doi:10.1103/PhysRevA.53.3822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.