×

A finite analog of the AGT relation. I: Finite \(W\)-algebras and quasimaps’ spaces. (English) Zbl 1247.81169

In this paper the authors propose a finite analog of the AGT conjecture. This conjecture implies the existence of certain structures on the equivariant intersection cohomology of the Uhlenbeck partial compactification of the moduli space of framed \(G\)-bundles on \(\mathbb{P}^{2}\). More precisely, it predicts the existence of an action of the corresponding \(W\)-algebra on the above cohomology, satisfying certain properties. They replace the Uhlenbeck space with the space of based quasi-maps from \(\mathbb{P}^{1}\) to any partial flag variety \(G/P\) of \(G\) and conjecture that is equivariant intersection cohomology carries an action of the infinite \(W\)-algebra \(U(\mathfrak{g}, e)\) associated with the principal nilpotent element in the Lie algebra of the Levi subgroup of \(P\). From the physical point of view this conjecture relates a \(4\)-dimensional super-symmetric gauge theory for a gauge group \(G\) with certain \(2\)-dimensional conformal field theory. Initially the authors recall the basic definitions about finite \(W\)-algebras for general \(G\); they also recall the basic results parabolic quasi-map’s spaces and formulate its main conjecture. Thereafter, the authors recall the results of Brundan and Kleshchev who interpret finite \(W\)-algebras in type \(A\) using certain shifted Yangians and discuss the notion of Whittaker vectors for finite \(W\)-algebras from this point view. They use it in order to prove their main conjecture for \(G=GL(N)\) (and any parabolic). One important ingredient in the proof is this: they replace the intersection cohomology of parabolic quasi-map’s spaces by the ordinary cohomology of a small resolutions of those spaces. Finally, they discuss the relation between the above results and the AGT conjecture.

MSC:

81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
17B81 Applications of Lie (super)algebras to physics, etc.

References:

[1] Alday L.F., Gaiotto D., Gukov S., Tachikawa Y., Verlinde H.: Loop and surface operators in N = 2 gauge theory and Liouville modular geometry. JHEP 1001, 113 (2010) · Zbl 1269.81078 · doi:10.1007/JHEP01(2010)113
[2] Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91(2), 167–197 (2010) · Zbl 1185.81111
[3] Alday L.F., Tachikawa Y.: Affine SL(2) conformal blocks from 4d gauge theories. Lett. Math. Phys. 94(1), 87–114 (2010) · Zbl 1198.81162 · doi:10.1007/s11005-010-0422-4
[4] Awata H., Yamada Y.: Five-dimensional AGT Relation and the deformed {\(\beta\)}-ensemble. Prog. Theor. Phys. 124, 227–262 (2010) · Zbl 1201.81074 · doi:10.1143/PTP.124.227
[5] Braverman, A.: Instanton counting via affine Lie algebras. I. Equivariant J-functions of (affine) flag manifolds and Whittaker vectors. In: Algebraic structures and moduli spaces, CRM Proc. Lecture Notes 38, Providence, RI: Amer. Math. Soc., 2004, pp. 113–132 · Zbl 1130.14013
[6] Braverman, A.: Spaces of quasi-maps and their applications. In: International Congress of Mathematicians. Vol. II, Zürich: Eur. Math. Soc., 2006, pp. 1145–1170 · Zbl 1118.22007
[7] Braverman A., Etingof P.: Instanton counting via affine Lie algebras II: from Whittaker vectors to the Seiberg-Witten prepotential. In: Studies in Lie theory, Progr. Math., 243, pp. 61–78. Birkhäuser Boston, Boston (2006) · Zbl 1177.14036
[8] Braverman A., Finkelberg M., Gaitsgory D.: Uhlenbeck spaces via affine Lie algebras. In: The unity of mathematics (volume dedicated to I. M. Gelfand’s 90th birthday), Progr. Math. 244, pp. 17–135. Birkhäuser Boston, Boston, MA (2006) · Zbl 1105.14013
[9] Braverman A., Finkelberg M., Gaitsgory D., Mirković I.: Intersection cohomology of Drinfeld’s compactifications. Selecta Math. (N.S.) 8(3), 381–418 (2002) · Zbl 1031.14019 · doi:10.1007/s00029-002-8111-5
[10] Brundan J., Goodwin S.M.: Good grading polytopes. Proc. London Math. Soc. 94, 155–180 (2007) · Zbl 1120.17007 · doi:10.1112/plms/pdl009
[11] Brundan, J., Goodwin, S., Kleshchev, A.: Highest weight theory for finite W-algebras. Int. Math. Res. Not. 2008, Art. ID rnn051, 53 pp. (2008) · Zbl 1211.17024
[12] Brundan J., Kleshchev A.: Representations of shifted Yangians and finite W-algebras. Mem. Amer. Math. Soc. 196, no. 918. Amer. Math. Soc., Providence, RI (2008) · Zbl 1169.17009
[13] Etingof P.: Whittaker functions on quantum groups and q-deformed Toda operators. In: Differential topology, infinite-dimensional Lie algebras, and applications, pp. 9–25. Amer. Math. Soc., Providence, RI (1999) · Zbl 1157.33327
[14] Feigin B., Frenkel E.: Representations of affine Kac-Moody algebras, bosonization and resolutions. Lett. Math. Phys. 19, 307–317 (1990) · Zbl 0711.17012 · doi:10.1007/BF00429950
[15] Finkelberg, M., Mirković, I.: Semi-infinite flags. I. Case of global curve $${\(\backslash\)mathbb{P}\^1}$$ . In: Differential topology, infinite-dimensional Lie algebras, and applications , Amer. Math. Soc. Transl. Ser. 2, 194, Providence,RI: Amer. Math. Soc., 1999, pp. 81–112 · Zbl 1076.14512
[16] Feigin B., Finkelberg M., Kuznetsov A., Mirković I.: Semi-infinite flags. II. Local and global intersection cohomology of quasimaps’ spaces. In: Differential topology, infinite-dimensional Lie algebras, and applications, pp. 113–148. Amer. Math. Soc., Providence, RI (1999) · Zbl 1076.14511
[17] Feigin, B., Finkelberg, M., Negut, A., Rybnikov, L.: Yangians and cohomology rings of Laumon spaces. Selecta Math. http://arxiv.org/abs/0812.4656v4 [math.AG], (2011, to appear) · Zbl 1260.14015
[18] Futorny, V., Molev, A., Ovsienko, S.: Gelfand-Tsetlin bases for representations of finite W-algebras and shifted Yangians. In: ”Lie theory and its applications in physics VII”, H. D. Doebner, V. K. Dobrev, eds., Proceedings of the VII International Workshop, Varna, Bulgaria, June 2007, Sofia: Heron Press, 2008, pp. 352–363 · Zbl 1202.81093
[19] Givental A., Kim B.: Quantum cohomology of flag manifolds and Toda lattices. Commun. Math. Phys. 168(3), 609–641 (1995) · Zbl 0828.55004 · doi:10.1007/BF02101846
[20] Kim B.: cohomology of flag manifolds G/B and quantum Toda lattices. Ann. of Math. 149((2), 129–148 (1999) · Zbl 1054.14533 · doi:10.2307/121021
[21] Laumon G.: Un Analogue Global du Cône Nilpotent. Duke Math. J 57, 647–671 (1988) · Zbl 0688.14023 · doi:10.1215/S0012-7094-88-05729-8
[22] Laumon G.: Faisceaux Automorphes Liés aux Séries d’Eisenstein. Perspect. Math. 10, 227–281 (1990) · Zbl 0773.11032
[23] Mironov A., Morozov A.: On AGT relation in the case of U(3). Nucl. Phys. B 825, 1–37 (2010) · Zbl 1196.81205 · doi:10.1016/j.nuclphysb.2009.09.011
[24] Marshakov A., Mironov A., Morozov A.: On non-conformal limit of the AGT relations. Phys. Lett. B 682(1), 125–129 (2009) · doi:10.1016/j.physletb.2009.10.077
[25] Maulik, D., Okounkov, A.: In preparation
[26] Taki M.: On AGT Conjecture for Pure Super Yang-Mills and W-algebra. JHEP 1105, 038 (2011) · Zbl 1296.81069 · doi:10.1007/JHEP05(2011)038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.