×

Study of the effects of flow channel with non-uniform cross-sectional area on PEMFC species and heat transfer. (English) Zbl 1227.80017

Summary: We investigate the performance of a proton exchange membrane fuel cell. The results show that an inclination of \(0.75^\circ \) in the flow channel can effectively increase the current density generated by almost 9.5% and the maximum power density by 8%. With the use of more tapered channels the distribution of the reactants in the porous media leads to a better effective oxygen distribution, affecting directly the heat transfer inside the cell. In contrast, the pressure drop in the flow channel increase by factors of approximately 2 and 3.5 for angles of \(0.5^\circ \) and \(0.75^\circ \), respectively.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76S05 Flows in porous media; filtration; seepage
76W05 Magnetohydrodynamics and electrohydrodynamics
76M12 Finite volume methods applied to problems in fluid mechanics
80M12 Finite volume methods applied to problems in thermodynamics and heat transfer
Full Text: DOI

References:

[1] Corbo, P.; Migliardini, G.; Veneri, O.: Experimental analysis of a 20kWe PEM fuel cell system in dynamic conditions representative of automotive applications, Energy conversion and management 49, 2688-2697 (2008)
[2] Ramirez, D.; Beites, L. F.; Blazquez, F.; Ballesteros, J. C.: Distributed generation system with PEM fuel cell for electrical power quality improvement, International journal of hydrogen energy 33, 4433-4443 (2008)
[3] Jiao, K.; Li, X.: Water transport in polymer electrolyte membrane fuel cells, Progress in energy and combustion science 37, 221-291 (2011)
[4] Kim, H.; Nam, J. H.; Shin, D.; Chung, T. Y.; Kim, Y. G.: A numerical study on liquid water exhaust capabilities of flow channels in polymer electrolyte membrane fuel cells, Current applied physics 10, S91-S96 (2010)
[5] Gerteisen, D.; Heilmann, T.; Ziegler, C.: Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell, Journal of power sources 177, 348-354 (2008)
[6] Nam, J. H.; Lee, K. J.; Hwang, G. S.; Kim, C. J.; Kaviany, M.: Microporous layer for water morphology control in PEMFC, International journal of heat and mass transfer 52, 2779-2791 (2009)
[7] Trabold, T. A.; Owejan, J. P.; Jacobson, D. L.; Arif, M.; Huffman, P. R.: In situ investigation of water transport in an operating PEM fuel cell using neutron radiography: part 1 – experimental method and serpentine flow field results, International journal of heat and mass transfer 49, 4712-4720 (2006) · Zbl 1370.76176
[8] Wang, Y.: Fundamental models for fuel cell engineering, Chemical reviews 4, 4727-4766 (2004)
[9] Yuan, W.; Tang, Y.; Pan, M.; Li, Z.; Tang, B.: Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance, Renewable energy 35, 656-666 (2010)
[10] Park, H. Y.; Hwang, J. W.; Park, K. T.; Kim, S.; Jeong, Y. U.; Jung, H. W.; Kim, S. H.: Effect of process conditions on dynamics and performance of PEMFC: comparison with experiments, Thin solid films 518, 6505-6509 (2010)
[11] Santarelli, M. G.; Torchio, M. F.: Experimental analysis of the effects of the operating variables on the performance of a single PEMFC, Energy conversion and management 48, 40-51 (2007)
[12] Cheng, C. H.; Lin, H. H.; Lai, G. J.: Design for geometric parameters of PEM fuel cell by integrating computational fluid dynamics code with optimization method, Journal of power sources 165, 803-813 (2007)
[13] Su, A.; Ferng, Y. M.; Shih, J. C.: CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC, Energy 35, 16-27 (2010)
[14] Scharwz, D. H.; Beale, S. B.: Calculations of transport phenomena and reaction distribution in a polymer electrolyte membrane fuel cell, International journal of heat and mass transfer 52, 4047-4081 (2009) · Zbl 1167.78319 · doi:10.1016/j.ijheatmasstransfer.2009.03.043
[15] Hwang, J. J.; Chen, P. Y.: Heat/mass transfer in porous electrode, International journal of heat and mass transfer 49, 2327-2351 (2006) · Zbl 1189.76597 · doi:10.1016/j.ijheatmasstransfer.2005.11.021
[16] Wang, Y.; Cho, S.; Thiedmann, R.; Schmidt, V.; Lehnert, W.; Feng, X.: Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells, International journal of heat and mass transfer 53, 1128-1138 (2010) · Zbl 1183.80073 · doi:10.1016/j.ijheatmasstransfer.2009.10.044
[17] Sprague, I. B.; Dutta, P.: Modeling of diffuse charge in a microfluidic based laminar flow fuel cell, Numerical heat transfer: part A 59, 1-27 (2011)
[18] Bavarian, M.; Soroush, M.; Kevrekidis, I. G.; Benzinger, J. B.: Mathematical modelling steady-state and dynamic behavior, and control of fuel cells: a review, Industrial and engineering chemistry research 49, 7922-7950 (2010)
[19] Yuan, J.; Rokni, M.; Sundén, B.: Simulation of fully developed laminar heat and mass transfer in fuel cell ducts with different cross-sections, International journal of heat and mass transfer 44, 4047-4058 (2001) · Zbl 1003.76502 · doi:10.1016/S0017-9310(01)00052-7
[20] Bunmarck, N.; Limtrakul, S.; Fowler, M. W.; Vatanatham, T.; Gostick, J.: Assisted water management in a PEMFC with modified flow field and its effect on performance, International journal of hydrogen energy 35, 6887-6896 (2010)
[21] Kuo, J. K.; Chen, C. K.: The effects of buoyancy on the performance of a PEM fuel cell with a wave-like gas flow channel design by numerical investigation, International journal of heat and mass transfer 50, 4166-4179 (2007) · Zbl 1142.80310 · doi:10.1016/j.ijheatmasstransfer.2007.02.039
[22] Liu, H. C.; Yan, W. M.; Soong, C. Y.; Chen, F.; Chu, H. S.: Reactant gas transport and cell performance of proton exchange membrane fuel cells with tapered flow field design, Journal of power sources 158, 78-87 (2006)
[23] Zhenzhong, Z.; Junxun, C.; Pingji, Z.: Enhancement of proton exchange membrane fuel cell performance using a novel tapered gas channel, Chinese journal of chemical engineering 17, No. 2, 286-297 (2009)
[24] Perng, S. W.; Wu, H. W.: Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel, Applied energy 88, 52-67 (2011)
[25] Fluent\textregistered  13.0 Documentation, Fluent Inc., 2010.
[26] Springer, T. E.; Zawodzinki, T. A.; Gottesfeld, S.: Polymer electrolyte fuel cell model, Journal of electrochemical society 141, 1493-1498 (1994)
[27] Parthasarathy, A.; Srinivasan, S.; Appleby, A. J.; Martin, C.: Temperature dependence of the electrode kinetics of oxygen production of the platinum/nafion interface – a microelectrode investigation, Journal of electrochemical society 139, 2530-2537 (1992)
[28] Cheng, C. H.; Lin, H. H.; Lai, G. J.: Numerical prediction of the effect of catalyst layer nafion loading on the performance of PEM fuel cells, Journal of power sources 164, 730-741 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.