×

Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells. (English) Zbl 1183.80073

Summary: This paper combines the stochastic-model-based reconstruction of the gas diffusion layer (GDL) of polymer electrolyte fuel cells (PEFCs) and direct simulation to investigate the pore-level transport within GDLs. The carbon-paper-based GDL is modeled as a stack of thin sections with each section described by planar two-dimensional random line tessellations which are further dilated to three dimensions. The reconstruction is based on given GDL data provided by scanning electron microscopy (SEM) images. With the constructed GDL, we further introduce the direct simulation of the coupled transport processes inside the GDL. The simulation considers the gas flow and species transport in the void space, electronic current conduction in the solid, and heat transfer in both phases. Results indicate a remarkable distinction in tortuosities of gas diffusion passage and solid matrix across the GDL with the former \(\sim 1.2\) and the latter \(\sim 13.8\). This difference arises from the synthetic microstructure of GDL, i.e. the lateral alignment nature of the thin carbon fiber, allowing the solid-phase transport to occur mostly in lateral direction. Extensive discussion on the tortuosity is also presented. The numerical tool can be applied to investigate the impact of the GDL microstructure on pore-level transport and scrutinize the macroscopic approach vastly adopted in current fuel cell modeling.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
80A32 Chemically reacting flows
76R50 Diffusion
76D05 Navier-Stokes equations for incompressible viscous fluids
76S05 Flows in porous media; filtration; seepage
76M12 Finite volume methods applied to problems in fluid mechanics
78A55 Technical applications of optics and electromagnetic theory
Full Text: DOI

References:

[1] Perry, M. L.; Fuller, T. F.: Conjugated and fullerene-containing polymers for electronic and photonic applications: advanced syntheses and microlithographic fabrications, J. electrochem. Soc. 149, S59-S67 (2002)
[2] Larminie, J.; Dicks, A.: Fuel cell systems explained, (2003)
[3] Wang, C. Y.: Fundamental models for fuel cell engineering, Chem. rev. 104, 4727-4765 (2004)
[4] Costamagna, P.; Srinivasan, S.: Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part I. Fundamental scientific aspects, J. power sources 102, 242-252 (2001)
[5] Costamagna, P.; Srinivasan, S.: Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. Engineering, technology development and application aspects, J. power sources 102, 253-269 (2001)
[6] Mathias, M.; Roth, J.; Fleming, J.; Lehnert, W.: Diffusion media materials and characterization, Handbook of fuel cells: fundamentals technology and applications 3 (2003)
[7] Hartnig, C. H.; Jörissen, L.; Kerres, J.; Lehnert, W.; Scholta, J.: Polymer electrolyte membrane fuel cells (PEMFC), Materials for fuel cells (2008)
[8] Yi, J. S.; Nguyen, T. V.: Multi-component transport in porous electrodes in proton exchange membrane fuel cells using the interdigitated gas distributors, J. electrochem. Soc. 146, 38 (1999)
[9] Wang, Y.; Wang, C. Y.: Simulations of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operations, J. power sources 147, 148 (2005)
[10] Dutta, S.; Shimpalee, S.; Van Zee, J. W.: Three-dimensional numerical simulation of straight channel PEM fuel cells, J. appl. Electrochem. 30, 135 (2000)
[11] Wang, Y.; Wang, C. Y.: Modeling polymer electrolyte fuel cells with large density and velocity changes, J. electrochem. Soc. 152, No. 2, A445 (2005)
[12] Mazumder, S.; Cole, J. V.: Rigorous 3-D mathematical modeling of PEM fuel cells, J. electrochem. Soc. 150, 1503 (2003)
[13] Hwang, J. J.: Thermal-electrochemical modelling porous electrodes of a PEM fuel cell, J. electrochem. Soc. 153, A216 (2006)
[14] Wang, Y.; Wang, C. Y.: A non-isothermal, two-phase model for polymer electrolyte fuel cells, J. electrochem. Soc. 153, A1193 (2006)
[15] Birgersson, E.; Noponen, M.; Vynnycky, M.: Analysis of a two-phase non-isothermal model for a PEFC, J. electrochem. 152, A1021 (2005) · Zbl 1137.76513
[16] Pasaogullari, U.; Wang, C. Y.: Two-phase transport and the role of microporous layer in polymer electrolyte fuel cells, J. electrochem. Soc. 151, A399 (2004)
[17] Nam, J. -H.; Kaviany, M.: Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int. J. Heat mass transfer 46, 4595 (2003)
[18] Wang, Y.: Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells, J. power sources 185, 261-271 (2008)
[19] Bernardi, D. M.; Verbrugge, M. W.: A mathematical model of the solid-polymer-electrolyte fuel cell, J. electrochem. Soc. 139, 2477 (1992)
[20] Meng, H.; Wang, C. Y.: Electron transport in pefcs, J. electrochem. Soc. 151, A358 (2004)
[21] Meng, H.: A three-dimensional PEM fuel cell model with consistent treatment of water transport in MEA, J. power sources 162, 426 (2006)
[22] Wang, Y.: Analysis of the key parameters in the cold start of polymer electrolyte fuel cells, J. electrochem. Soc. 154, B1041-B1048 (2007)
[23] Mukherjee, P. P.; Wang, C. Y.: Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer, J. electrochem. Soc. 153, A840 (2006)
[24] Piller, M.; Schena, G.; Nolich, M.; Favretto, S.; Radaelli, F.; Rossi, E.: Analysis of hydraulic permeability in porous media: from high resolution X-ray tomography to direct numerical simulation, Transp. porous media 80, 57 (2009)
[25] Schulz, V. P.; Mukherjee, P. P.; Becker, J.; Wiegmann, A.; Wang, C. Y.: Numerical evaluation of effective gas diffusivity - saturation dependence of uncompressed and compressed gas diffusion media in pefcs, ECS trans. 3, 1069 (2006)
[26] Kaviaty, M.: Principles of heat transfer in porous media, (1999)
[27] Kaviany, M.: Principles of convective heat transfer, (2001) · Zbl 0974.80001
[28] Thiedmann, R.; Fleischer, F.; Hartnig, Ch.; Lehnert, W.; Schmidt, V.: Stochastic 3Dmodeling of the GDL structure in PEM fuel cells based on thin section detections, J. electrochem. Soc. 155, B391-B399 (2008)
[29] Schulz, V. P.; Becker, J.; Wiegmann, A.; Mukherjee, P. P.; Wang, C. -Y.: Modeling of two-phase behavior in the gas diffusion medium of polymer electrolyte fuel cells via full morphology approach, J. electrochem. Soc. 154, No. 4, B419-B426 (2007)
[30] G. Inoue, Y. Matsukuma, M. Minemoto, in: Proceedings of the Second European Fuel Cell Technology and Applications Conference, EFC2007-39024, 2007.
[31] Yoneda, M.; Takimoto, M.; Koshizuka, S.: ECS trans., ECS trans. 11, 629-635 (2007)
[32] Inoue, G.; Yoshimoto, T.; Matsukuma, Y.; Minemoto, M.: Development of simulated gas diffusion layer of polymer electrolyte fuel cells and evaluation of its structure, J. power sources 175, 145-158 (2008)
[33] Gostick, J. T.; Fowler, M. W.; Ioannidis, M. A.; Pritzker, M. D.; Volfkovich, Y. M.; Sakars, A.: Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells, J. power sources 156, 375-387 (2006)
[34] Schneider, R.; Weil, W.: Stochastic and integral geometry, (2008) · Zbl 1175.60003
[35] Stoyan, D.; Kendall, W. S.; Mecke, J.: Stochastic geometry and its applications, (1995) · Zbl 0838.60002
[36] Thiedmann, R.; Hartnig, Ch.; Manke, I.; Schmidt, V.; Lehnert, W.: J. electrochem. Soc., J. electrochem. Soc. 156, No. 11, B1339-B1347 (2009)
[37] Wang, Y.; Feng, X.: Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cells part I: Single-layer electrodes, J. electrochem. Soc. 155, No. 12, B1289-B1295 (2008)
[38] Patankar, S. V.: Numerical heat transfer and fluid flow, (1980) · Zbl 0521.76003
[39] Feser, J. P.; Prasad, A. K.; Advani, S. G.: Experimental characterization of in-plane permeability of gas diffusion layers, J. power sources 162, 1226-1231 (2006)
[40] Keil, F.: Diffusion und chemische reaktionen in der gas/feststoff – katalyse, (1999)
[41] Shen, L.; Chen, Z.: Critical review of the impact of tortuosity on diffusion, Chem. eng. Sci. 62, 3748-3755 (2007)
[42] Wyllie, M. R. J.; Spangler, M. B.: Application of electrical resistivity measurements to problem of fluid flow in porous media, Am. assoc. Pet. geol. Bull. 36, 359 (1952)
[43] Liu, S.; Masliyah, J. H.: K.vafaihandbook of porous media, Handbook of porous media, 81-140 (2005)
[44] Wua, Y. S.; Van Vliet, L. J.; Frijlink, H. W.; Van Der Voort Maarschalk, K.: The determination of relative path length as a measure for tortuosity in compacts using image analysis, Eur. J. Pharm. sci. 28, 433-440 (2006)
[45] Cornell, D.; Katz, D. L.: Flow of gases through consolidated porous media, Ind. eng. Chem. 45, 2145 (1953)
[46] Abraham, K. M.: Directions in secondary lithium battery research and development, Electrochim. acta 38, 1233 (1993)
[47] Djian, D.; Alloin, F.; Martinet, S.; Lignier, H.; Sanchez, J. Y.: Lithium-ion batteries with high charge rate capacity: influence of the porous separator, J. power sources 172, 416 (2007)
[48] Bhatia, S. K.: Stochastic theory of transport in inhomogeneous media, Chem. eng. Sci. 41, 1311 (1986)
[49] Sharratt, P. N.; Mann, R.: Some observations on the variation of tortuosity with thiele modulus and pore size distribution, Chem. eng. Sci. 42, No. 7, 1565-1576 (1987)
[50] Macmullin, R. B.; Muccini, G. A.: Characteristics of porous beds and structures, Aiche J. 2, 393 (1956)
[51] Martinez, M. J.; Shimpalee, S.; Van Zee, J. W.: Measurement of macmullin numbers for PEMFC gas-diffusion media, J. electrochem. Soc. 156, B80 (2009)
[52] Archie, G. E.: The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. am. Inst. MIN metall. Pet. eng. 146, 54 (1942)
[53] Hao, L.; Chen, P.: Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers, J. power sources 186, 104-114 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.