×

Bauschinger and size effects in thin-film plasticity due to defect-energy of geometrical necessary dislocations. (English) Zbl 1270.74128

Summary: The Bauschinger and size effects in the thin-film plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale \(L\). By incorporating it into the workconjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness \(h\). By comparing it with discrete-dislocation simulation results, the length scale \(L\) is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defectenergy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.

MSC:

74K35 Thin films
74C99 Plastic materials, materials of stress-rate and internal-variable type
74E15 Crystalline structure
Full Text: DOI

References:

[1] Vlassak, J., Nix, W.: A new bulge test technique for determination of elastic modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242–3249 (1992) · doi:10.1557/JMR.1992.3242
[2] Hommel, M., Kraft, O.: Deformation behavior of thin copper films on deformable substrates. Acta Materialia 49(19), 3935–3947 (2001) · doi:10.1016/S1359-6454(01)00293-2
[3] Shen, Y., Suresh, S., He, M., et al.: Stress evolution in con-fined thin films of Cu on silica substrates. Journal of Materials Research 13(7), 1928–1937 (1998) · doi:10.1557/JMR.1998.0272
[4] Espinosa, H., Prorok, B., Fischer, M.: A methodology for determining mechanical properties of freestanding thin films and MEMS materials. Journal of the Mechanics and Physics of Solids 51(1), 47–67 (2003) · doi:10.1016/S0022-5096(02)00062-5
[5] Espinosa, H., Prorok, B., Peng, B.: Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. Journal of the Mechanics and Physics of Solids 52(3), 667–689 (2004) · doi:10.1016/j.jmps.2003.07.001
[6] Dehm, G., Balk, T., Edongué, H., et al.: Small-scale plasticity in thin Cu and Al films. Microelectronic Engineering 70(2–4), 412–424 (2003) · doi:10.1016/S0167-9317(03)00395-2
[7] Florando, J., Nix, W.: A microbeam bending method for studying stress-strain relations for metal thin films on silicon substrates. Journal of the Mechanics and Physics of Solids 53(3), 619–638 (2005) · Zbl 1122.74452 · doi:10.1016/j.jmps.2004.08.007
[8] Xiang, Y., Vlassak, J.: Bauschinger and size effects in thin-film plasticity. Acta Materialia 54(20), 5449–5460 (2006) · doi:10.1016/j.actamat.2006.06.059
[9] Cleveringa, H., van der Giessen E., Needleman, A.: A discrete dislocation analysis of bending. International Journal of Plas ticity 15(8), 837–868 (1999) · Zbl 0976.74048 · doi:10.1016/S0749-6419(99)00013-3
[10] Shu, J., Fleck, N., van der Giessen E., et al.: Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. Journal of the Mechanics and Physics of Solids 49(6), 1361–1395 (2001) · Zbl 1015.74004 · doi:10.1016/S0022-5096(00)00074-0
[11] Nicola, L., van der Giessen E., Needleman, A.: Discrete dislocation analysis of size effects in thin films. Journal of Applied Physics 93, 5920 (2003) · doi:10.1063/1.1566471
[12] Nicola, L., van der Giessen E., Needleman, A.: Size effects in polycrystalline thin films analyzed by discrete dislocation plasticity. Thin Solid Films 479(1–2), 329–338 (2005) · doi:10.1016/j.tsf.2004.12.012
[13] Deshpande, V., Needleman, A., van der Giessen E.: Plasticity size effects in tension and compression of single crystals. Journal of the Mechanics and Physics of Solids 53(12), 2661–2691 (2005) · Zbl 1120.74390 · doi:10.1016/j.jmps.2005.07.005
[14] Liu, Z.L., Liu, X.M., Zhuang, Z., et al.: Atypical three-stagehardening mechanical behavior of Cu single-crystal micropillars. Scripta Materialia 60(7), 594–597 (2009) · doi:10.1016/j.scriptamat.2008.12.020
[15] Liu, Z.L., Liu, X.M., Zhuang, Z., et al.: A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales. International Journal of Plasticity 25(8), 1436–1455 (2009) · Zbl 1235.74013 · doi:10.1016/j.ijplas.2008.11.006
[16] Fleck, N.: Strain gradient plasticity: theory and experiment. Acta Metallurgia et Materialia(UK) 42(2), 475–487 (1994) · doi:10.1016/0956-7151(94)90502-9
[17] Uchic, M., Dimiduk, D., Florando, J., et al.: Sample dimensions influence strength and crystal plasticity. American Association for the Advancement of Science 305, 986–989 (2004) · doi:10.1126/science.1098993
[18] Greer, J., Oliver, W., Nix, W.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Materialia 53(6), 1821–1830 (2005) · doi:10.1016/j.actamat.2004.12.031
[19] Shan, Z.W., Mishra, R.K., Asif, S.A.S., et al.: Mechanical annealing and source-limited deformation in submicrometrediameter Ni crystals. Nature Materials 7(2), 115–119 (2008) · doi:10.1038/nmat2085
[20] Yefimov, S., Groma, I., van der Giessen E.: A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. Journal of the Mechanics and Physics of Solids 52(2), 279–300 (2004) · Zbl 1106.74331 · doi:10.1016/S0022-5096(03)00094-2
[21] Aifantis, E.: On the microstructural origin of certain inelastic models. Journal of Engineering Materials and Technology 106(4), 326–330 (1984) · doi:10.1115/1.3225725
[22] Fleck, N., Hutchinson, J.: Strain gradient plasticity. Solid Mechanics 33, 295–361 (1997) · Zbl 0894.73031
[23] Fleck, N., Hutchinson, J.: A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 49(10), 2245–2271 (2001) · Zbl 1033.74006 · doi:10.1016/S0022-5096(01)00049-7
[24] Gao, H., Huang, Y., Nix, W., et al.: Mechanism-based strain gradient plasticity: I. Theory. Journal of the Mechanics and Physics of Solids 47(6), 1239–1263 (1999) · Zbl 0982.74013 · doi:10.1016/S0022-5096(98)00103-3
[25] Huang, Y., Gao, H., Nix, W., et al.: Mechanism-based strain gradient plasticity-II. Analysis. Journal of the Mechanics and Physics of Solids 48(1), 99–128 (2000) · Zbl 0990.74016 · doi:10.1016/S0022-5096(99)00022-8
[26] Han, C., Gao, H., Huang, Y., et al.: Mechanism-based strain gradient crystal plasticity-I. Theory. Journal of the Mechanics and Physics of Solids 53(5), 1188–1203 (2005) · Zbl 1120.74356 · doi:10.1016/j.jmps.2004.08.008
[27] Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids 50(1), 5–32 (2002) · Zbl 1043.74007 · doi:10.1016/S0022-5096(01)00104-1
[28] Gurtin, M.E.: A finite-deformation, gradient theory of singlecrystal plasticity with free energy dependent on densities of geometrically necessary dislocations. International Journal of Plasticity 24(4), 702–725 (2008) · Zbl 1131.74006 · doi:10.1016/j.ijplas.2007.07.014
[29] Kuroda, M., Tvergaard, V.: On the formulations of higher-order strain gradient crystal plasticity models. Journal of the Mechanics and Physics of Solids 56(4), 1591–1608 (2008) · Zbl 1171.74332 · doi:10.1016/j.jmps.2007.07.015
[30] Gerken, J., Dawson, P.: A crystal plasticity model that incorporates stresses and strains due to slip gradients. Journal of the Mechanics and Physics of Solids 56(4), 1651–1672 (2008) · Zbl 1171.74331 · doi:10.1016/j.jmps.2007.07.012
[31] Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D.: Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids 52(10), 2379–2401 (2004) · Zbl 1115.74313 · doi:10.1016/j.jmps.2004.03.007
[32] Bittencourt, E., Needleman, A., Gurtin, M., et al.: A comparison of nonlocal continuum and discrete dislocation plasticity predictions. Journal of the Mechanics and Physics of Solids 51(2), 281–310 (2003) · Zbl 1100.74530 · doi:10.1016/S0022-5096(02)00081-9
[33] Anand, L., Gurtin, M., Lele, S., et al.: A one-dimensional theory of strain-gradient plasticity: Formulation, analysis, numerical results. Journal of the Mechanics and Physics of Solids 53(8), 1789–1826 (2005) · Zbl 1120.74350 · doi:10.1016/j.jmps.2005.03.003
[34] Gurtin, M., Anand, L., Lele, S.: Gradient single-crystal plasticity with free energy dependent on dislocation densities. Journal of the Mechanics and Physics of Solids 55(9), 1853–1878 (2007) · Zbl 1170.74013 · doi:10.1016/j.jmps.2007.02.006
[35] Kuroda, M., Tvergaard, V.: A finite deformation theory of higher-order gradient crystal plasticity. Journal of the Mechanics and Physics of Solids 56(8), 2573–2584 (2008) · Zbl 1171.74324 · doi:10.1016/j.jmps.2008.03.010
[36] Nye, J.: Some geometrical relations in dislocated solids. Acta Metall 1, 153–162 (1953) · doi:10.1016/0001-6160(53)90054-6
[37] Ashby, M.F.: Deformation of plastically non-homogeneous materials. Philosophical Magazine 21(171), 399–424 (1970) · doi:10.1080/14786437008238426
[38] Ohashi, T.: Finite-element analysis of plastic slip and evolution of geometrically necessary dislocations in fcc crystals. Philosophical Magazine Letters 75(2), 51–58 (1997) · doi:10.1080/095008397179741
[39] Kubin, L., Canova, G.: The modelling of dislocation patterns. Scripta Metallurgica et Materialia 27(8), 957–962 (1992) · doi:10.1016/0956-716X(92)90456-O
[40] Arsenlis, A., Parks, D.: Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Materialia 47(5), 1597–1611 (1999) · doi:10.1016/S1359-6454(99)00020-8
[41] Acharya, A.: A model of crystal plasticity based on the theory of continuously distributed dislocations. Journal of the Mechanics and Physics of Solids 49(4), 761–784 (2001) · Zbl 1017.74010 · doi:10.1016/S0022-5096(00)00060-0
[42] Gurtin, M., Anand, L.: A gradient theory for single-crystal plasticity. Modelling and Simulation in Materials Science and Engineering 15(1), 263 (2007) · Zbl 1170.74013 · doi:10.1088/0965-0393/15/1/S20
[43] Nicola, L., van der Giessen E., Gurtin, M.: Effect of defect energy on strain-gradient predictions of confined single-crystal plasticity. Journal of the Mechanics and Physics of Solids 53(6), 1280–1294 (2005) · Zbl 1120.74358 · doi:10.1016/j.jmps.2005.02.001
[44] Zaiser, M., Aifantis, E.: Randomness and slip avalanches in gradient plasticity. International Journal of Plasticity 22(8), 1432–1455 (2006) · Zbl 1331.74035 · doi:10.1016/j.ijplas.2005.07.010
[45] Groma, I., Csikor, F., Zaiser, M.: Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Materialia 51(5), 1271–1281 (2003) · doi:10.1016/S1359-6454(02)00517-7
[46] Hirth, J., Lothe, J.: Theory of Dislocations. Wiley, New York (1982)
[47] Aifantis, E.: From micro-to macro-plasticity: The scale invariance approach. Journal of Engineering Materials and Technology 117(4), 352–355 (1995) · doi:10.1115/1.2804724
[48] Aifantis, E.: Update on a class of gradient theories. Mechanics of Materials 35(3–6), 259–280 (2003) · doi:10.1016/S0167-6636(02)00278-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.