×

Maximal subgroups of the minimal ideal of a free profinite monoid are free. (English) Zbl 1220.20045

The author shows that the maximal subgroup of the minimal ideal of a finitely generated free profinite monoid is a free profinite group. This answers a question asked by S. W. Margolis in the 1990s. More generally, if \(\mathbf H\) is an extension-closed pseudovariety of finite groups that contains a cyclic \(p\)-group for infinitely many primes \(p\) and \(\overline{\mathbf H}\) is the pseudovariety of all finite monoids whose subgroups lie in \(\mathbf H\), then the maximal subgroup of the minimal ideal of a finitely generated free pro-\(\overline{\mathbf H}\) monoid is a free profinite group.
Reviewer’s remark. A further generalization has been obtained by A. Costa and the author [Proc. Lond. Math. Soc. (3) 102, No. 2, 341-369 (2011; Zbl 1257.20054)].

MSC:

20M05 Free semigroups, generators and relations, word problems
20E18 Limits, profinite groups
20M07 Varieties and pseudovarieties of semigroups
20M12 Ideal theory for semigroups
20A15 Applications of logic to group theory

Citations:

Zbl 1257.20054
Full Text: DOI

References:

[1] D. Allen, Jr. and J. Rhodes, Synthesis of classical and modern theory of finite semigroups. Advances in Mathematics 11 (1973), 238–266. · doi:10.1016/0001-8708(73)90010-8
[2] J. Almeida, Finite semigroups and universal algebra, Volume 3 of Series in Algebra. World Scientific Publishing Co. Inc., River Edge, NJ, 1994. Translated from the 1992 Portuguese original and revised by the author. · Zbl 0844.20039
[3] J. Almeida, Profinite groups associated with weakly primitive substitutions, Fundamental’naya i Prikladnaya Matematika 11 (2005), 13–48. Translation in Journal of Mathematical Sciences (N.Y.) 144 (2007), 3881–3903. · Zbl 1110.20022
[4] J. Almeida and M. V. Volkov, Profinite identities for finite semigroups whose subgroups belong to a given pseudovariety, Journsl of Algebra and its Applications 2 (2003), 137–163. · Zbl 1061.20050 · doi:10.1142/S0219498803000519
[5] J. Almeida and M. V. Volkov. Subword complexity of profinite words and subgroups of free profinite semigroups, International Journal of Algebra and Computation 16 (2006), 221–258. · Zbl 1186.20040 · doi:10.1142/S0218196706002883
[6] M. Arbib, The automata theory of semigroup embeddings, Journal of the Australian Mathematical Society 8 (1968), 568–570. · Zbl 0159.02502 · doi:10.1017/S1446788700006224
[7] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I, Mathematical Surveys, No. 7. American Mathematical Society, Providence, RI, 1961. · Zbl 0111.03403
[8] S. Eilenberg, Automata, Languages, and Machines. Vol. B, Academic Press, New York, 1976. With two chapters (”Depth decomposition theorem” and ”Complexity of semi-groups and morphisms”) by Bret Tilson, Pure and Applied Mathematics, Vol. 59.
[9] K. Iwasawa, On solvable extensions of algebraic number fields, Annals of Mathematics (2) 58 (1953), 548–572. · Zbl 0051.26602 · doi:10.2307/1969754
[10] K. Krohn, J. Rhodes and B. Tilson, in Algebraic Theory of Machines, Languages, and Semigroups (Michael A. Arbib, ed.) With a major contribution by Kenneth Krohn and John L. Rhodes. Academic Press, New York, 1968, Chapters 1, 5–9.
[11] S. Margolis, Maximal pseudovarieties of finite monoids and semigroups, Izvestiya Vysshikh Uchebnykh Zavedeniĭ Matematika (1) (1995), 65–70. Translation in Russian Math. (Iz. VUZ) 39 (1995), 60–64. · Zbl 0846.20062
[12] B. H. Neumann, Embedding theorems for semigroups, Journal of the London Mathematical Society 35 (1960), 184–192. · Zbl 0090.01701 · doi:10.1112/jlms/s1-35.2.184
[13] J. Rhodes and B. Steinberg, Profinite semigroups, varieties, expansions and the structure of relatively free profinite semigroups, International Journal of Algebra and Computation 11 (2001), 627–672. · Zbl 1026.20057 · doi:10.1142/S0218196701000784
[14] J. Rhodes and B. Steinberg, Closed subgroups of free profinite monoids are projective profinite groups, The Bulletin of the London Mathematical Society 40 (2008), 375–383. · Zbl 1153.20029 · doi:10.1112/blms/bdn017
[15] J. Rhodes and B. Steinberg, The q-Theory of Finite Semigroups, Springer Monographs in Mathematics, Springer, New York, 2009. · Zbl 1186.20043
[16] L. Ribes and P. Zalesskii, Profinite Groups, Volume 40 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.