Skip to main content
Log in

Maximal subgroups of the minimal ideal of a free profinite monoid are free

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We answer a question of Margolis from 1997 by establishing that the maximal subgroup of the minimal ideal of a finitely generated free profinite monoid is a free profinite group. More generally, if H is variety of finite groups closed under extension and containing ℤ/pℤ for infinitely may primes p, the corresponding result holds for free pro-\( \bar H \) monoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Allen, Jr. and J. Rhodes, Synthesis of classical and modern theory of finite semigroups. Advances in Mathematics 11 (1973), 238–266.

    Article  MathSciNet  Google Scholar 

  2. J. Almeida, Finite semigroups and universal algebra, Volume 3 of Series in Algebra. World Scientific Publishing Co. Inc., River Edge, NJ, 1994. Translated from the 1992 Portuguese original and revised by the author.

    MATH  Google Scholar 

  3. J. Almeida, Profinite groups associated with weakly primitive substitutions, Fundamental’naya i Prikladnaya Matematika 11 (2005), 13–48. Translation in Journal of Mathematical Sciences (N.Y.) 144 (2007), 3881–3903.

    MATH  Google Scholar 

  4. J. Almeida and M. V. Volkov, Profinite identities for finite semigroups whose subgroups belong to a given pseudovariety, Journsl of Algebra and its Applications 2 (2003), 137–163.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Almeida and M. V. Volkov. Subword complexity of profinite words and subgroups of free profinite semigroups, International Journal of Algebra and Computation 16 (2006), 221–258.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Arbib, The automata theory of semigroup embeddings, Journal of the Australian Mathematical Society 8 (1968), 568–570.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I, Mathematical Surveys, No. 7. American Mathematical Society, Providence, RI, 1961.

    Google Scholar 

  8. S. Eilenberg, Automata, Languages, and Machines. Vol. B, Academic Press, New York, 1976. With two chapters (“Depth decomposition theorem” and “Complexity of semi-groups and morphisms”) by Bret Tilson, Pure and Applied Mathematics, Vol. 59.

    MATH  Google Scholar 

  9. K. Iwasawa, On solvable extensions of algebraic number fields, Annals of Mathematics (2) 58 (1953), 548–572.

    Article  MathSciNet  Google Scholar 

  10. K. Krohn, J. Rhodes and B. Tilson, in Algebraic Theory of Machines, Languages, and Semigroups (Michael A. Arbib, ed.) With a major contribution by Kenneth Krohn and John L. Rhodes. Academic Press, New York, 1968, Chapters 1, 5–9.

    Google Scholar 

  11. S. Margolis, Maximal pseudovarieties of finite monoids and semigroups, Izvestiya Vysshikh Uchebnykh Zavedeniĭ Matematika (1) (1995), 65–70. Translation in Russian Math. (Iz. VUZ) 39 (1995), 60–64.

  12. B. H. Neumann, Embedding theorems for semigroups, Journal of the London Mathematical Society 35 (1960), 184–192.

    Article  MATH  Google Scholar 

  13. J. Rhodes and B. Steinberg, Profinite semigroups, varieties, expansions and the structure of relatively free profinite semigroups, International Journal of Algebra and Computation 11 (2001), 627–672.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Rhodes and B. Steinberg, Closed subgroups of free profinite monoids are projective profinite groups, The Bulletin of the London Mathematical Society 40 (2008), 375–383.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Rhodes and B. Steinberg, The q-Theory of Finite Semigroups, Springer Monographs in Mathematics, Springer, New York, 2009.

    Google Scholar 

  16. L. Ribes and P. Zalesskii, Profinite Groups, Volume 40 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Steinberg.

Additional information

The author was supported in part by NSERC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, B. Maximal subgroups of the minimal ideal of a free profinite monoid are free. Isr. J. Math. 176, 139–155 (2010). https://doi.org/10.1007/s11856-010-0023-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0023-z

Keywords

Navigation