×

Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization. (English) Zbl 1183.41028

Summary: The goal of this paper is to investigate the Tikhonov-Phillips method for semi-discrete linear ill-posed problems in order to determine tight error bounds and to obtain a good parameter choice. We consider the equation \(Af = g\), where the operator \(A\) is known, noisy discrete data \(g_1^\delta ,\dots , g_n^\delta \) with \(g(x_i)\approx g_i^\delta \) can be observed and a solution \(f^*\) is sought. Assuming that \(f^*\) is an element of a Sobolev space, we use the well-known theory of optimal recovery in Hilbert spaces for the reconstruction process. We then provide \(L_{2}\)-error estimates in terms of the data density and derive an a priori selection for the regularization parameter, which guarantees an optimal compromise between approximation and stability. Finally, we illustrate the parameter selection with a simple example.

MSC:

41A40 Saturation in approximation theory
45A05 Linear integral equations
45Q05 Inverse problems for integral equations
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
65D07 Numerical computation using splines
Full Text: DOI

References:

[1] DOI: 10.1007/s00211-007-0092-z · Zbl 1221.41012 · doi:10.1007/s00211-007-0092-z
[2] DOI: 10.2307/1990404 · Zbl 0037.20701 · doi:10.2307/1990404
[3] DOI: 10.1016/j.jco.2006.07.001 · Zbl 1109.68088 · doi:10.1016/j.jco.2006.07.001
[4] DOI: 10.1088/0266-5611/1/4/004 · Zbl 0615.65057 · doi:10.1088/0266-5611/1/4/004
[5] DOI: 10.1088/0266-5611/4/3/004 · Zbl 0653.65042 · doi:10.1088/0266-5611/4/3/004
[6] Chen Z., Inverse Problems pp 24– (2008)
[7] DOI: 10.1007/BF01404567 · Zbl 0377.65007 · doi:10.1007/BF01404567
[8] DOI: 10.1090/S0273-0979-01-00923-5 · Zbl 0983.68162 · doi:10.1090/S0273-0979-01-00923-5
[9] DOI: 10.1142/S0219530506000711 · Zbl 1088.65056 · doi:10.1142/S0219530506000711
[10] Vito E. De, J. Machine Learning Research 6 pp 883– (2005)
[11] DOI: 10.1016/S0096-3003(97)10104-7 · Zbl 0943.65133 · doi:10.1016/S0096-3003(97)10104-7
[12] DOI: 10.1137/060658813 · Zbl 1148.65090 · doi:10.1137/060658813
[13] DOI: 10.1016/j.enganabound.2005.08.008 · Zbl 1195.65177 · doi:10.1016/j.enganabound.2005.08.008
[14] DOI: 10.1088/0266-5611/12/2/005 · Zbl 0851.65036 · doi:10.1088/0266-5611/12/2/005
[15] DOI: 10.1088/0266-5611/15/2/009 · Zbl 0933.65060 · doi:10.1088/0266-5611/15/2/009
[16] DOI: 10.1090/S0025-5718-06-01873-4 · Zbl 1103.62031 · doi:10.1090/S0025-5718-06-01873-4
[17] Narcowich F. J., Math. Comput. 74 pp 643– (2005)
[18] DOI: 10.1007/s00365-005-0624-7 · Zbl 1120.41022 · doi:10.1007/s00365-005-0624-7
[19] Opfer R., Comput. Math. 25 pp 357– (2006)
[20] DOI: 10.1016/j.acha.2005.05.003 · Zbl 1094.42029 · doi:10.1016/j.acha.2005.05.003
[21] DOI: 10.1137/S0036142903433819 · Zbl 1103.65058 · doi:10.1137/S0036142903433819
[22] DOI: 10.1007/BF01386397 · Zbl 0675.65053 · doi:10.1007/BF01386397
[23] Poggio T., Amer. Math. Soc. 50 pp 537– (2003)
[24] DOI: 10.1016/j.jco.2006.09.002 · Zbl 1131.65113 · doi:10.1016/j.jco.2006.09.002
[25] DOI: 10.1007/BF01437407 · Zbl 0299.65008 · doi:10.1007/BF01437407
[26] DOI: 10.1137/0714044 · Zbl 0402.65032 · doi:10.1137/0714044
[27] DOI: 10.1007/BF02123482 · Zbl 0838.41014 · doi:10.1007/BF02123482
[28] DOI: 10.1006/jath.1997.3137 · Zbl 0904.41013 · doi:10.1006/jath.1997.3137
[29] DOI: 10.1137/040612993 · Zbl 1104.65089 · doi:10.1137/040612993
[30] DOI: 10.1007/s00211-005-0637-y · Zbl 1081.65016 · doi:10.1007/s00211-005-0637-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.