×

Fibonacci, van der Corput and Riesz-Nágy. (English) Zbl 1227.11032

Summary: What do the three names in the title have in common? The purpose of this paper is to relate them in a new and, hopefully, interesting way. Starting with the Fibonacci numeration system – also known as Zeckendorf’s system – we pose ourselves the problem of extending it in a natural way to represent all real numbers in \((0,1)\). We see that this natural extension leads to what is known as the \(\phi\)-system restricted to the unit interval. The resulting complete system of numeration replicates the uniqueness of the binary system which, in our opinion, is responsible for the possibility of defining the van der Corput sequence in \((0,1)\), a very special sequence which besides being uniformly distributed has one of the lowest discrepancy, a measure of the goodness of the uniformity. Lastly, combining the Fibonacci system and the binary in a very special way we obtain a singular function, more specifically, the inverse of one of the family of Riesz-Nágy.

MSC:

11A63 Radix representation; digital problems
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.
26A30 Singular functions, Cantor functions, functions with other special properties
Full Text: DOI

References:

[1] Van der Corput, J., Verteilungsfunktionen. I. Mitt, Proc. Akad. Wet. Amsterdam, 38, 813-821 (1935) · Zbl 0012.34705
[2] Oppenheim, A., The representation of real numbers by infinite series of rationals, Acta Arith., 21, 391-398 (1972) · Zbl 0258.10003
[3] Balkema, A. A., Hoofdstuk V, Seminarium Getal en Kans 1967/68 (1968), Matematisch Institut: Matematisch Institut Amsterdam
[4] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8, 477-493 (1957) · Zbl 0079.08901
[5] Parry, W., On the \(β\)-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11, 401-416 (1960) · Zbl 0099.28103
[6] Lüroth, J., Über eine eindeutige Entwickelung von Zahlen in eine unendliche Reiche, Math. Ann., 21, 411-423 (1883)
[7] Sierpiński, W., Sur quelques algorithmes pour développer les nombres réels en séries, C. R. Soc. Sci. Varsovie. (Oeuvres Choisies, t. I (1974), PWN: PWN Warszawa), 4, 236-254 (1911), (in Polish); there is a French translation
[8] Sylvester, J. J., On a point in the theory of vulgar fractions, Amer. J. Math., 3, 332-335 (1880) · JFM 13.0142.02
[9] Paradís, J.; Viader, P.; Bibiloni, L., Riesz-Nágy singular functions revisited, J. Math. Anal. Appl., 329, 1, 592-602 (2007) · Zbl 1115.26001
[10] Galambos, J., Representations of Real Numbers by Infinite Series, Lecture Notes in Math., vol. 502 (1976), Springer-Verlag: Springer-Verlag Berlin · Zbl 0322.10002
[11] Brezinski, C., History of Continued Fractions and Padé Approximants (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0714.01001
[12] Martin, G., The unreasonable effectualness of continued function expansions, J. Aust. Math. Soc., 77, 3, 305-319 (2004) · Zbl 1062.11045
[13] Cantor, G., Über die einfachen Zahlensysteme, Zeit. für Math., 14, 121-128 (1869) · JFM 02.0085.01
[14] Oppenheim, A., On the representation of real numbers by products of rational numbers, Quart. J. Math. Oxford Ser. (2), 4, 303-307 (1953) · Zbl 0053.03903
[15] Knopfmacher, A.; Knopfmacher, J., A new infinite product representation for real numbers, Monatsh. Math., 104, 29-44 (1987) · Zbl 0624.10008
[16] Riesz, F.; Nágy, B. Sz., Functional Analysis (1990), Dover Publications, Inc.: Dover Publications, Inc. New York · Zbl 0732.47001
[17] Fraenkel, A. S., Systems of numeration, Amer. Math. Monthly, 92, 2, 105-114 (1985) · Zbl 0568.10005
[18] Zeckendorf, E., Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège, 41, 179-182 (1972) · Zbl 0252.10011
[19] Graham, R. L.; Knuth, D. E.; Patashnik, O., Concrete Mathematics: A Foundation for Computer Science (1989), Addison-Wesley Publishing Company Advanced Book Program: Addison-Wesley Publishing Company Advanced Book Program Reading, MA · Zbl 0668.00003
[20] Rockett, A. M.; Szüsz, P., Continued Fractions (1992), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 0925.11038
[21] Petkovšek, M., Ambiguous numbers are dense, Amer. Math. Monthly, 97, 5, 408-411 (1990) · Zbl 0711.11005
[22] Starbird, M.; Starbird, T., Required redundancy in the representation of reals, Proc. Amer. Math. Soc., 114, 3, 769-774 (1992) · Zbl 0753.40003
[23] Dajani, K.; Kraaikamp, C., Ergodic Theory of Numbers, Carus Math. Monogr., vol. 29 (2002), Mathematical Association of America: Mathematical Association of America Washington, DC · Zbl 1033.11040
[24] Bergman, G., A number system with an irrational base, Math. Mag., 31, 98-110 (1957/58) · Zbl 0079.01003
[25] Kuipers, L.; Niederreiter, H., Uniform Distribution of Sequences (1973), John Wiley & Sons: John Wiley & Sons New York · Zbl 0568.10001
[26] Drmota, M.; Tichy, R. F., Sequences, Discrepancies and Applications, Lecture Notes in Math., vol. 1651 (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0877.11043
[27] Schmidt, W. M., Irregularities of distribution. VII, Acta Arith., 21, 45-50 (1972) · Zbl 0244.10035
[28] Béjian, R.; Faure, H., Discrépance de la suite de Van der Corput, C. R. Acad. Sci. Paris Sér. A-B, 285, 5, A313-A316 (1977) · Zbl 0361.10032
[30] Viader, P.; Paradís, J.; Bibiloni, L., A new light on Minkowski’s \(?(x)\) function, J. Number Theory, 73, 2, 212-227 (1998) · Zbl 0928.11006
[31] Paradís, J.; Viader, P.; Bibiloni, L., The derivative of Minkowski’s \(?(x)\) function, J. Math. Anal. Appl., 253, 1, 107-125 (2001) · Zbl 0995.26005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.