×

Variational methods in relativistic quantum mechanics. (English) Zbl 1288.49016

Summary: This review is devoted to the study of stationary solutions of linear and nonlinear equations from relativistic quantum mechanics, involving the Dirac operator. The solutions are found as critical points of an energy functional. Contrary to the Laplacian appearing in the equations of nonrelativistic quantum mechanics, the Dirac operator has a negative continuous spectrum which is not bounded from below. This has two main consequences. First, the energy functional is strongly indefinite. Second, the Euler-Lagrange equations are linear or nonlinear eigenvalue problems with eigenvalues lying in a spectral gap (between the negative and positive continuous spectra). Moreover, since we work in the space domain \( \mathbb{R}^3\), the Palais-Smale condition is not satisfied. For these reasons, the problems discussed in this review pose a challenge in the Calculus of Variations. The existence proofs involve sophisticated tools from nonlinear analysis and have required new variational methods which are now applied to other problems. In the first part, we consider the fixed eigenvalue problem for models of a free self-interacting relativistic particle. They allow us to describe the localized state of a spin-\( 1/2\) particle (a fermion) which propagates without changing its shape. This includes the Soler models, and the Maxwell-Dirac or Klein-Gordon-Dirac equations. The second part is devoted to the presentation of min-max principles allowing us to characterize and compute the eigenvalues of linear Dirac operators with an external potential in the gap of their essential spectrum. Many consequences of these min-max characterizations are presented, among them are new kinds of Hardy-like inequalities and a stable algorithm to compute the eigenvalues. In the third part we look for normalized solutions of nonlinear eigenvalue problems. The eigenvalues are Lagrange multipliers lying in a spectral gap. We review the results that have been obtained on the Dirac-Fock model which is a nonlinear theory describing the behavior of \( N\) interacting electrons in an external electrostatic field. In particular we focus on the problematic definition of the ground state and its nonrelativistic limit. In the last part, we present a more involved relativistic model from Quantum Electrodynamics in which the behavior of the vacuum is taken into account, it being coupled to the real particles. The main interesting feature of this model is that the energy functional is now bounded from below, providing us with a good definition of a ground state.

MSC:

49S05 Variational principles of physics
35J60 Nonlinear elliptic equations
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35Q75 PDEs in connection with relativity and gravitational theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V70 Many-body theory; quantum Hall effect
81V45 Atomic physics
81V55 Molecular physics

References:

[1] Simonetta Abenda, Solitary waves for Maxwell-Dirac and Coulomb-Dirac models, Ann. Inst. H. Poincaré Phys. Théor. 68 (1998), no. 2, 229 – 244 (English, with English and French summaries). · Zbl 0907.35104
[2] Herbert Amann, Saddle points and multiple solutions of differential equations, Math. Z. 169 (1979), no. 2, 127 – 166. · Zbl 0414.47042 · doi:10.1007/BF01215273
[3] C.D. Anderson. The Positive Electron. Phys. Rev. 43 (1933), 491-494.
[4] Walter H. Aschbacher, Lowering the Hartree-Fock minimizer by electron-positron pair correlation, Lett. Math. Phys. 70 (2004), no. 1, 29 – 41. · Zbl 1059.81178 · doi:10.1007/s11005-004-3501-6
[5] Volker Bach, Jean-Marie Barbaroux, Bernard Helffer, and Heinz Siedentop, Stability of matter for the Hartree-Fock functional of the relativistic electron-positron field, Doc. Math. 3 (1998), 353 – 364. · Zbl 0913.35113
[6] Volker Bach, Jean-Marie Barbaroux, Bernard Helffer, and Heinz Siedentop, On the stability of the relativistic electron-positron field, Comm. Math. Phys. 201 (1999), no. 2, 445 – 460. · Zbl 1024.81056 · doi:10.1007/s002200050562
[7] V. Bach, E.H. Lieb, M. Loss, J.P. Solovej. There are no unfilled shells in unrestricted Hartree-Fock theory. Phys. Rev. Lett. 72(19) (1994), 2981-2983.
[8] Alain Bachelot, Problème de Cauchy global pour des systèmes de Dirac-Klein-Gordon, Ann. Inst. H. Poincaré Phys. Théor. 48 (1988), no. 4, 387 – 422 (French, with English summary). · Zbl 0672.35071
[9] Agnès Bachelot-Motet, Nonlinear Dirac fields on the Schwarzschild metric, Classical Quantum Gravity 15 (1998), no. 7, 1815 – 1825. · Zbl 0939.83008 · doi:10.1088/0264-9381/15/7/003
[10] A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), no. 3, 253 – 294. · Zbl 0649.35033 · doi:10.1002/cpa.3160410302
[11] Mikhaël Balabane, Thierry Cazenave, Adrien Douady, and Frank Merle, Existence of excited states for a nonlinear Dirac field, Comm. Math. Phys. 119 (1988), no. 1, 153 – 176. · Zbl 0696.35158
[12] Mikhaël Balabane, Thierry Cazenave, and Luis Vázquez, Existence of standing waves for Dirac fields with singular nonlinearities, Comm. Math. Phys. 133 (1990), no. 1, 53 – 74. · Zbl 0721.35065
[13] Jean-Marie Barbaroux, Maria J. Esteban, and Eric Séré, Some connections between Dirac-Fock and electron-positron Hartree-Fock, Ann. Henri Poincaré 6 (2005), no. 1, 85 – 102. · Zbl 1062.81156 · doi:10.1007/s00023-005-0199-7
[14] Jean-Marie Barbaroux, Walter Farkas, Bernard Helffer, and Heinz Siedentop, On the Hartree-Fock equations of the electron-positron field, Comm. Math. Phys. 255 (2005), no. 1, 131 – 159. · Zbl 1087.81055 · doi:10.1007/s00220-004-1156-x
[15] Jean-Marie Barbaroux, Bernard Helffer, and Heinz Siedentop, Remarks on the Mittleman max-min variational method for the electron-positron field, J. Phys. A 39 (2006), no. 1, 85 – 98. · Zbl 1091.81081 · doi:10.1088/0305-4470/39/1/007
[16] W.E. Bayliss, S. J. Peel. Stable variational calculations with the Dirac Hamiltonian. Phys. Rev. A, 28(4) (1983), 2552-2554.
[17] Vieri Benci and Paul H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), no. 3, 241 – 273. · Zbl 0465.49006 · doi:10.1007/BF01389883
[18] Anne-M. Berthier and Vladimir Georgescu, Sur le spectre ponctuel de l’opérateur de Dirac, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 6, 335 – 338 (French, with English summary). · Zbl 0546.35052
[19] Anne Berthier and Vladimir Georgescu, On the point spectrum of Dirac operators, J. Funct. Anal. 71 (1987), no. 2, 309 – 338. · Zbl 0655.47043 · doi:10.1016/0022-1236(87)90007-3
[20] James D. Bjorken and Sidney D. Drell, Relativistic quantum fields, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965. · Zbl 0184.54201
[21] Nabile Boussaid, Stable directions for small nonlinear Dirac standing waves, Comm. Math. Phys. 268 (2006), no. 3, 757 – 817. · Zbl 1127.35060 · doi:10.1007/s00220-006-0112-3
[22] Nikolaos Bournaveas, Local existence for the Maxwell-Dirac equations in three space dimensions, Comm. Partial Differential Equations 21 (1996), no. 5-6, 693 – 720. · Zbl 0880.35116 · doi:10.1080/03605309608821204
[23] Nikolaos Bournaveas, Local existence of energy class solutions for the Dirac-Klein-Gordon equations, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1167 – 1193. · Zbl 0931.35134 · doi:10.1080/03605309908821463
[24] Hilary Booth, Electrons with self-field as solutions to nonlinear PDE, Geometric analysis and applications (Canberra, 2000) Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 39, Austral. Nat. Univ., Canberra, 2001, pp. 1 – 14. · Zbl 1122.81326
[25] Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437 – 477. · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[26] Boris Buffoni, Maria J. Esteban, and Eric Séré, Normalized solutions to strongly indefinite semilinear equations, Adv. Nonlinear Stud. 6 (2006), no. 2, 323 – 347. · Zbl 1229.35069 · doi:10.1515/ans-2006-0212
[27] Boris Buffoni and Louis Jeanjean, Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), no. 4, 377 – 404 (English, with English and French summaries). · Zbl 0828.35013
[28] B. Buffoni, L. Jeanjean, and C. A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993), no. 1, 179 – 186. · Zbl 0789.35052
[29] V. I. Burenkov and W. D. Evans, On the evaluation of the norm of an integral operator associated with the stability of one-electron atoms, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 5, 993 – 1005. · Zbl 0917.47057 · doi:10.1017/S030821050003002X
[30] É. Cancès, A. Deleurence, M. Lewin. A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case. Comm. Math. Phys., 281 (2008), 129-177. · Zbl 1157.82042
[31] Alfonso Castro and A. C. Lazer, Applications of a max-min principle, Rev. Colombiana Mat. 10 (1976), no. 4, 141 – 149 (English, with Spanish summary). · Zbl 0356.35073
[32] T. Cazenave. On the existence of stationary states for classical nonlinear Dirac fields. In Hyperbolic systems and Mathematical Physics. Textos e Notas 4, CMAF, Lisbonne (1989).
[33] Thierry Cazenave and Luis Vázquez, Existence of localized solutions for a classical nonlinear Dirac field, Comm. Math. Phys. 105 (1986), no. 1, 35 – 47. · Zbl 0596.35117
[34] John M. Chadam, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension, J. Functional Analysis 13 (1973), 173 – 184. · Zbl 0264.35058
[35] J. M. Chadam and R. T. Glassey, On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions, J. Math. Anal. Appl. 53 (1976), no. 3, 495 – 507. · Zbl 0324.35076 · doi:10.1016/0022-247X(76)90087-1
[36] P. Chaix, D. Iracane. The Bogoliubov-Dirac-Fock formalism. I. J. Phys. At. Mol. Opt. Phys. 22 (1989), 3791-3814.
[37] P. Chaix, D. Iracane, P.-L. Lions. The Bogoliubov-Dirac-Fock formalism. II. J. Phys. At. Mol. Opt. Phys. 22 (1989), 3815-3828.
[38] Yvonne Choquet-Bruhat, Solutions globales des équations de Maxwell-Dirac-Klein-Gordon (masses nulles), C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 2, 153 – 158 (French, with English summary). · Zbl 0498.35053
[39] Frank H. Clarke and Ivar Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), no. 2, 103 – 116. · Zbl 0403.70016 · doi:10.1002/cpa.3160330202
[40] Charles V. Coffman, Uniqueness of the ground state solution for \Delta \?-\?+\?³=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972), 81 – 95. · Zbl 0249.35029 · doi:10.1007/BF00250684
[41] C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol\(^{\prime}\)d, Invent. Math. 73 (1983), no. 1, 33 – 49. · Zbl 0516.58017 · doi:10.1007/BF01393824
[42] S.N. Datta, G. Deviah. The minimax technique in relativistic Hartree-Fock calculations. Pramana 30(5) (1988), 393-416.
[43] João-Paulo Dias and Mário Figueira, Global existence of solutions with small initial data in \?^{\?} for the massive nonlinear Dirac equations in three space dimensions, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 3, 861 – 874 (English, with Italian summary). · Zbl 0637.35014
[44] P.A.M. Dirac. The quantum theory of the electron. Proc. Roy. Soc. A 117 (1928), 610-624. · JFM 54.0973.01
[45] P.A.M. Dirac. A theory of electrons and protons. Proc. Roy. Soc. A 126 (1930), 360-365. · JFM 56.0751.02
[46] P.A.M. Dirac. Théorie du positron. Solvay report (1934), 203-212. Gauthier-Villars, Paris. XXV, 353 S.
[47] P.A.M. Dirac. Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Camb. Philos. Soc. 30 (1934), 150-163. · Zbl 0009.13704
[48] Jean Dolbeault, Maria J. Esteban, and Michael Loss, Relativistic hydrogenic atoms in strong magnetic fields, Ann. Henri Poincaré 8 (2007), no. 4, 749 – 779. · Zbl 1130.81033 · doi:10.1007/s00023-006-0321-5
[49] Jean Dolbeault, Maria J. Esteban, Michael Loss, and Luis Vega, An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal. 216 (2004), no. 1, 1 – 21. · Zbl 1060.35120 · doi:10.1016/j.jfa.2003.09.010
[50] Jean Dolbeault, Maria J. Esteban, and Eric Séré, Variational characterization for eigenvalues of Dirac operators, Calc. Var. Partial Differential Equations 10 (2000), no. 4, 321 – 347. · Zbl 0968.49025 · doi:10.1007/s005260010321
[51] Jean Dolbeault, Maria J. Esteban, and Eric Séré, On the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal. 174 (2000), no. 1, 208 – 226. · Zbl 0982.47006 · doi:10.1006/jfan.1999.3542
[52] J. Dolbeault, M.J. Esteban, E. Séré. A variational method for relativistic computations in atomic and molecular physics. Int. J. Quantum Chemistry 93 (2003), 149-155.
[53] Jean Dolbeault, Maria J. Esteban, and Eric Séré, General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 2, 243 – 251. · Zbl 1157.47306 · doi:10.4171/JEMS/50
[54] J. Dolbeault, M.J. Esteban, E. Séré, M. Vanbreugel. Minimization methods for the one-particle Dirac equation. Phys. Rev. Lett. 85(19) (2000), 4020-4023.
[55] G.W.F. Drake, S.P. Goldman. Application of discrete-basis-set methods to the Dirac equation. Phys. Rev. A 23 (1981), 2093-2098.
[56] G.W.F. Drake, S.P. Goldman. Relativistic Sturmian and finite basis set methods in atomic physics. Adv. Atomic Molecular Phys. 23 (1988), 23-29.
[57] G.W.F. Drake, S.P. Goldman. Adv. Atomic Molecular Phys. 25 (1988), 393.
[58] Ph. Durand. Transformation du Hamiltonien de Dirac en Hamiltoniens variationnels de type Pauli. Application à des atomes hydrogenoïdes. C. R. Acad. Sci. Paris 303(2) (1986), 119-124.
[59] Ph. Durand, J.-P. Malrieu. Effective Hamiltonians and pseudo-potentials as tools for rigorous modelling. In Ab initio methods in Quantum Chemistry I. K.P. Lawley ed., J. Wiley & Sons, 1987.
[60] M. Escobedo and L. Vega, A semilinear Dirac equation in \?^{\?}(\?³) for \?>1, SIAM J. Math. Anal. 28 (1997), no. 2, 338 – 362. · Zbl 0877.35028 · doi:10.1137/S0036141095283017
[61] Maria J. Esteban, Vladimir Georgiev, and Eric Séré, Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Partial Differential Equations 4 (1996), no. 3, 265 – 281. · Zbl 0869.35105 · doi:10.1007/BF01254347
[62] Maria J. Esteban and Éric Séré, Stationary states of the nonlinear Dirac equation: a variational approach, Comm. Math. Phys. 171 (1995), no. 2, 323 – 350. · Zbl 0843.35114
[63] M.J. Esteban, E. Séré. Existence and multiplicity of solutions for linear and nonlinear Dirac problems. Partial Differential Equations and Their Applications. CRM Proceedings and Lecture Notes, vol. 12. Eds. P.C. Greiner, V. Ivrii, L.A. Seco and C. Sulem. AMS, 1997.
[64] Maria J. Esteban and Eric Séré, Solutions of the Dirac-Fock equations for atoms and molecules, Comm. Math. Phys. 203 (1999), no. 3, 499 – 530. · Zbl 0938.35149 · doi:10.1007/s002200050032
[65] M. J. Esteban and E. Séré, Nonrelativistic limit of the Dirac-Fock equations, Ann. Henri Poincaré 2 (2001), no. 5, 941 – 961. · Zbl 1092.81520 · doi:10.1007/s00023-001-8600-7
[66] Maria J. Esteban and Eric Séré, A max-min principle for the ground state of the Dirac-Fock functional, Mathematical results in quantum mechanics (Taxco, 2001) Contemp. Math., vol. 307, Amer. Math. Soc., Providence, RI, 2002, pp. 135 – 141. · Zbl 1029.81032 · doi:10.1090/conm/307/05275
[67] William Desmond Evans, Peter Perry, and Heinz Siedentop, The spectrum of relativistic one-electron atoms according to Bethe and Salpeter, Comm. Math. Phys. 178 (1996), no. 3, 733 – 746. · Zbl 0857.47041
[68] G. Fang and N. Ghoussoub, Morse-type information on Palais-Smale sequences obtained by min-max principles, Comm. Pure Appl. Math. 47 (1994), no. 12, 1595 – 1653. · Zbl 0829.58008 · doi:10.1002/cpa.3160471204
[69] R. Finkelstein, R. LeLevier, and M. Ruderman, Non-linear spinor fields, Physical Rev. (2) 83 (1951), 326 – 332. · Zbl 0043.21603
[70] R. Finkelstein, C. Fronsdal, P. Kaus. Nonlinear Spinor Field. Phys. Rev. 103 (1956), 1571-1579. · Zbl 0073.44705
[71] Felix Finster, Joel Smoller, and Shing-Tung Yau, Particle-like solutions of the Einstein-Dirac-Maxwell equations, Phys. Lett. A 259 (1999), no. 6, 431 – 436. · Zbl 0936.83008 · doi:10.1016/S0375-9601(99)00457-0
[72] Felix Finster, Joel Smoller, and Shing-Tung Yau, Non-existence of black hole solutions for a spherically symmetric, static Einstein-Dirac-Maxwell system, Comm. Math. Phys. 205 (1999), no. 2, 249 – 262. · Zbl 0939.83037 · doi:10.1007/s002200050675
[73] M. Flato, Jacques Simon, and Erik Taflin, On global solutions of the Maxwell-Dirac equations, Comm. Math. Phys. 112 (1987), no. 1, 21 – 49. · Zbl 0641.35064
[74] Andreas Floer, Morse theory for fixed points of symplectic diffeomorphisms, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 2, 279 – 281. · Zbl 0617.53042
[75] L.L. Foldy, E. Eriksen. Some physical consequences of vacuum polarization. Phys. Rev. 95(4) (1954), 1048-1051. · Zbl 0056.44501
[76] Vladimir Georgiev, Small amplitude solutions of the Maxwell-Dirac equations, Indiana Univ. Math. J. 40 (1991), no. 3, 845 – 883. · Zbl 0754.35171 · doi:10.1512/iumj.1991.40.40038
[77] Nassif Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge Tracts in Mathematics, vol. 107, Cambridge University Press, Cambridge, 1993. With appendices by David Robinson. · Zbl 0790.58002
[78] R. Glauber, W. Rarita, P. Schwed. Vacuum polarization effects on energy levels in \( \mu\)-mesonic atoms. Phys. Rev. 120(2) (1960), 609-613. · Zbl 0097.22601
[79] W.T. Grandy, Jr. Relativistic quantum mechanics of leptons and fields. Kluwer Acad. Publisher, Fund. Theories of Physics, Vol. 41.
[80] Marcel Griesemer, Roger T. Lewis, and Heinz Siedentop, A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potentials, Doc. Math. 4 (1999), 275 – 283. · Zbl 1115.47300
[81] Marcel Griesemer and Heinz Siedentop, A minimax principle for the eigenvalues in spectral gaps, J. London Math. Soc. (2) 60 (1999), no. 2, 490 – 500. · Zbl 0952.47022 · doi:10.1112/S0024610799007930
[82] Leonard Gross, The Cauchy problem for the coupled Maxwell and Dirac equations, Comm. Pure Appl. Math. 19 (1966), 1 – 15. · Zbl 0137.32401 · doi:10.1016/S0079-8169(08)61684-0
[83] Christian Hainzl, Mathieu Lewin, and Éric Séré, Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation, Comm. Math. Phys. 257 (2005), no. 3, 515 – 562. · Zbl 1115.81061 · doi:10.1007/s00220-005-1343-4
[84] Christian Hainzl, Mathieu Lewin, and Eric Séré, Self-consistent solution for the polarized vacuum in a no-photon QED model, J. Phys. A 38 (2005), no. 20, 4483 – 4499. · Zbl 1073.81677 · doi:10.1088/0305-4470/38/20/014
[85] C. Hainzl, M. Lewin, É. Séré. Existence of atoms and molecules in the mean-field approximation of no-photon Quantum Electrodynamics, Arch. Rat. Mech. Anal., to appear. · Zbl 1173.81025
[86] Christian Hainzl, Mathieu Lewin, and Jan Philip Solovej, The mean-field approximation in quantum electrodynamics: the no-photon case, Comm. Pure Appl. Math. 60 (2007), no. 4, 546 – 596. · Zbl 1113.81126 · doi:10.1002/cpa.20145
[87] C. Hainzl, M. Lewin, É. Séré, J.P. Solovej. A minimization method for relativistic electrons in a mean-field approximation of Quantum Electrodynamics. Phys. Rev. A 76 (2007), 052104. · Zbl 1113.81126
[88] Christian Hainzl, Mathieu Lewin, and Christof Sparber, Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation, Lett. Math. Phys. 72 (2005), no. 2, 99 – 113. · Zbl 1115.81026 · doi:10.1007/s11005-005-4377-9
[89] W. Heisenberg. Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys. 90 (1934), 209-223. · JFM 60.0791.01
[90] Werner Heisenberg, Doubts and hopes in quantum-electrodynamics, Physica 19 (1953), 897 – 908. · Zbl 0051.20902
[91] Ira W. Herbst, Spectral theory of the operator (\?²+\?²)^{1/2}-\?\?²/\?, Comm. Math. Phys. 53 (1977), no. 3, 285 – 294. · Zbl 0375.35047
[92] R.N. Hill, C. Krauthauser. A solution to the problem of variational collapse for the one-particle Dirac equation. Phys. Rev. Lett. 72(14) (1994), 2151-2154.
[93] H. Hofer and K. Wysocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), no. 3, 483 – 503. · Zbl 0702.34039 · doi:10.1007/BF01444543
[94] Matthias Huber and Heinz Siedentop, Solutions of the Dirac-Fock equations and the energy of the electron-positron field, Arch. Ration. Mech. Anal. 184 (2007), no. 1, 1 – 22. · Zbl 1113.81132 · doi:10.1007/s00205-006-0016-6
[95] Walter Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta 39 (1966), 451 – 462. · Zbl 0141.44701
[96] W. Hunziker and I. M. Sigal, The quantum \?-body problem, J. Math. Phys. 41 (2000), no. 6, 3448 – 3510. · Zbl 0981.81026 · doi:10.1063/1.533319
[97] D. Ivanenko. Soviet Physics 13 (1938), 141-149.
[98] T. Kato. Perturbation theory for linear operators. Springer, 1966. · Zbl 0148.12601
[99] Tosio Kato, Holomorphic families of Dirac operators, Math. Z. 183 (1983), no. 3, 399 – 406. · Zbl 0515.47006 · doi:10.1007/BF01176480
[100] Sergiu Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math. 38 (1985), no. 5, 631 – 641. · Zbl 0597.35100 · doi:10.1002/cpa.3160380512
[101] S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984) Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293 – 326. · Zbl 0599.35105
[102] S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space \?\(^{n}\)\(^{+}\)\textonesuperior , Comm. Pure Appl. Math. 40 (1987), no. 1, 111 – 117. · Zbl 0686.46019 · doi:10.1002/cpa.3160400105
[103] M. Klaus and R. Wüst, Characterization and uniqueness of distinguished selfadjoint extensions of Dirac operators, Comm. Math. Phys. 64 (1978/79), no. 2, 171 – 176. · Zbl 0408.47022
[104] W. Kutzelnigg. Basis set expansion of the Dirac operator without variational collapse. Int. J. Quant. Chem. 25 (1984), 107-129.
[105] W. Kutzelnigg. Relativistic one-electron Hamiltonians “for electrons only” and the variational treatment of the Dirac equation. Chemical Physics 225 (1997), 203-222.
[106] Man Kam Kwong and Yi Li, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992), no. 1, 339 – 363. · Zbl 0785.35038
[107] L. D. Landau, On the quantum theory of fields, Niels Bohr and the development of physics, McGraw-Hill Book Co., New York, N. Y., 1955, pp. 52 – 69.
[108] Claude Le Bris and Pierre-Louis Lions, From atoms to crystals: a mathematical journey, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 3, 291 – 363. · Zbl 1136.81371
[109] E. van Lenthe, E.J. Baerends, J.G. Snijders. Solving the Dirac equation, using the large component only, in a Dirac-type Slater orbital basis set. Chem. Phys. Lett. 236 (1995), 235-241.
[110] E. van Lenthe, R. van Leeuwen, E.J. Baerends, J.G. Snijders. Relativistic regular two-component Hamiltonians. In New challenges in computational Quantum Chemistry. R. Broek et al ed. Publications Dept. Chem. Phys. and Material sciences. University of Groningen, 1994.
[111] R. van Leeuwen, E. van Lenthe, E.J. Baerends, J.G. Snijders. Exact solutions of regular approximate relativistic wave equations for hydrogen-like atoms. J. Chem. Phys. 101(2) (1994), 1272-1281.
[112] A. Le Yaouanc, L. Oliver, and J.-C. Raynal, The Hamiltonian (\?²+\?²)^{1/2}-\?/\? near the critical value \?_{\?}=2/\?, J. Math. Phys. 38 (1997), no. 8, 3997 – 4012. · Zbl 0883.47084 · doi:10.1063/1.532106
[113] Elliott H. Lieb, Variational principle for many-fermion systems, Phys. Rev. Lett. 46 (1981), no. 7, 457 – 459. · doi:10.1103/PhysRevLett.46.457
[114] Elliott H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math. 74 (1983), no. 3, 441 – 448. · Zbl 0538.35058 · doi:10.1007/BF01394245
[115] E.H. Lieb. Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A. 29 (1984), 3018-3028.
[116] Elliott H. Lieb and Heinz Siedentop, Renormalization of the regularized relativistic electron-positron field, Comm. Math. Phys. 213 (2000), no. 3, 673 – 683. · Zbl 0982.81037 · doi:10.1007/s002200000265
[117] Elliott H. Lieb and Barry Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys. 53 (1977), no. 3, 185 – 194.
[118] P.-L. Lions. The concentration-compactness method in the Calculus of Variations. The locally compact case. Part. I: Ann. Inst. H. Poincaré Anal. Nonlinéaire 1 (1984), 109-145. Part. II: Ann. Inst. H. Poincaré Anal. Nonlinéaire 1 (1984), 223-283. · Zbl 0541.49009
[119] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), no. 1, 33 – 97. · Zbl 0618.35111
[120] A. Garrett Lisi, A solitary wave solution of the Maxwell-Dirac equations, J. Phys. A 28 (1995), no. 18, 5385 – 5392. · Zbl 0868.35121
[121] Shuji Machihara, Kenji Nakanishi, and Tohru Ozawa, Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana 19 (2003), no. 1, 179 – 194. · Zbl 1041.35061 · doi:10.4171/RMI/342
[122] Nader Masmoudi and Kenji Nakanishi, Nonrelativistic limit from Maxwell-Klein-Gordon and Maxwell-Dirac to Poisson-Schrödinger, Int. Math. Res. Not. 13 (2003), 697 – 734. · Zbl 1013.35078 · doi:10.1155/S107379280320310X
[123] Nader Masmoudi and Kenji Nakanishi, Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations, Comm. Math. Phys. 243 (2003), no. 1, 123 – 136. · Zbl 1029.35199 · doi:10.1007/s00220-003-0951-0
[124] F. Merle, Existence of stationary states for nonlinear Dirac equations, J. Differential Equations 74 (1988), no. 1, 50 – 68. · Zbl 0696.35154 · doi:10.1016/0022-0396(88)90018-6
[125] M.H. Mittleman. Theory of relativistic effects on atoms: Configuration-space Hamiltonian. Phys. Rev. A 24(3) (1981), 1167-1175.
[126] P. J. Mohr, G. Plunien, G. Soff. QED corrections in heavy atoms. Phys. Rep. 293(5&6) (1998), 227-372.
[127] B. Najman, The nonrelativistic limit of the nonlinear Dirac equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), no. 1, 3 – 12 (English, with French summary). · Zbl 0746.35036
[128] G. Nenciu, Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms, Comm. Math. Phys. 48 (1976), no. 3, 235 – 247. · Zbl 0349.47014
[129] G. Nenciu, Existence of the spontaneous pair creation in the external field approximation of Q.E.D, Comm. Math. Phys. 109 (1987), no. 2, 303 – 312. · Zbl 0627.58040
[130] H. Ounaies, Perturbation method for a class of nonlinear Dirac equations, Differential Integral Equations 13 (2000), no. 4-6, 707 – 720. · Zbl 0974.35101
[131] Eric Paturel, Solutions of the Dirac-Fock equations without projector, Ann. Henri Poincaré 1 (2000), no. 6, 1123 – 1157. · Zbl 1072.81523 · doi:10.1007/PL00001024
[132] P. Pickl. Existence of Spontaneous Pair Creation. Dissertiation, München (2005), arXiv\( :\)hep-th/0609200.
[133] I. Ya. Pomeranchuk, V. V. Sudakov, and K. A. Ter-Martirosyan, Vanishing of renormalized charges in field theories with point interaction, Phys. Rev. (2) 103 (1956), 784 – 802.
[134] Paul H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), no. 1, 31 – 68. · Zbl 0341.35051 · doi:10.1002/cpa.3160310103
[135] Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157 – 184. · Zbl 0358.70014 · doi:10.1002/cpa.3160310203
[136] C. J. Radford, Localized solutions of the Dirac-Maxwell equations, J. Math. Phys. 37 (1996), no. 9, 4418 – 4433. · Zbl 0865.35112 · doi:10.1063/1.531663
[137] C. J. Radford, The stationary Maxwell-Dirac equations, J. Phys. A 36 (2003), no. 20, 5663 – 5681. · Zbl 1053.81022 · doi:10.1088/0305-4470/36/20/321
[138] A.F. Rañada. Classical nonlinear Dirac field models of extended particles. In Quantum theory, groups, fields and particles (editor A.O. Barut). Reidel, Amsterdam (1982).
[139] Michael Reed, Abstract non-linear wave equations, Lecture Notes in Mathematics, Vol. 507, Springer-Verlag, Berlin-New York, 1976. · Zbl 0317.35002
[140] Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. · Zbl 0242.46001
[141] J. Reinhardt, W. Greiner. Quantum Electrodynamics of strong fields. Rep. Prog. Phys. 40 (1977), 219-295.
[142] P.-G. Reinhard, W. Greiner, H. Arenhövel. Electrons in strong external fields. Nucl. Phys. A 166 (1971), 173-197.
[143] J. Reinhardt, B. Müller, W. Greiner. Theory of positron production in heavy-ion collision. Phys. Rev. A, 24(1) (1981), 103-128.
[144] Mary Beth Ruskai, Absence of discrete spectrum in highly negative ions. II. Extension to fermions, Comm. Math. Phys. 85 (1982), no. 2, 325 – 327.
[145] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1 – 24. · Zbl 0462.58014 · doi:10.2307/1971131
[146] Upke-Walther Schmincke, Distinguished selfadjoint extensions of Dirac operators, Math. Z. 129 (1972), 335 – 349. · Zbl 0252.35062 · doi:10.1007/BF01181622
[147] Julian Schwinger, Quantum electrodynamics. I. A covariant formulation, Physical Rev. (2) 74 (1948), 1439 – 1461. · Zbl 0032.09404
[148] Julian Schwinger, Quantum electrodynamics. II. Vacuum polarization and self-energy, Physical Rev. (2) 75 (1949), 651 – 679. · Zbl 0033.23406
[149] Julian Schwinger, On gauge invariance and vacuum polarization, Physical Rev. (2) 82 (1951), 664 – 679. · Zbl 0043.42201
[150] Éric Séré, Homoclinic orbits on compact hypersurfaces in \?^{2\?}, of restricted contact type, Comm. Math. Phys. 172 (1995), no. 2, 293 – 316. · Zbl 0840.34046
[151] I. M. Sigal, Geometric methods in the quantum many-body problem. Nonexistence of very negative ions, Comm. Math. Phys. 85 (1982), no. 2, 309 – 324. · Zbl 0503.47041
[152] I. M. Sigal, How many electrons can a nucleus bind?, Ann. Physics 157 (1984), no. 2, 307 – 320. · doi:10.1016/0003-4916(84)90062-9
[153] S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861 – 866. · Zbl 0143.35301 · doi:10.2307/2373250
[154] M. Soler. Classical, stable, nonlinear spinor field with positive rest energy. Phys. Rev. D 1 (1970), 2766-2769.
[155] Walter A. Strauss and Luis Vázquez, Stability under dilations of nonlinear spinor fields, Phys. Rev. D (3) 34 (1986), no. 2, 641 – 643. · Zbl 1222.81167 · doi:10.1103/PhysRevD.34.641
[156] B. Swirles. The relativistic self-consistent field. Proc. Roy. Soc. A 152 (1935), 625-649. · Zbl 0013.13603
[157] Wojciech Kryszewski and Andrzej Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations 3 (1998), no. 3, 441 – 472. · Zbl 0947.35061
[158] James D. Talman, Minimax principle for the Dirac equation, Phys. Rev. Lett. 57 (1986), no. 9, 1091 – 1094. · doi:10.1103/PhysRevLett.57.1091
[159] Bernd Thaller, The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. · Zbl 0765.47023
[160] C. Tix, Lower bound for the ground state energy of the no-pair Hamiltonian, Phys. Lett. B 405 (1997), no. 3-4, 293 – 296. · doi:10.1016/S0370-2693(97)00622-9
[161] C. Tix, Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall, Bull. London Math. Soc. 30 (1998), no. 3, 283 – 290. · Zbl 0939.35134 · doi:10.1112/S0024609397004256
[162] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations 21 (1996), no. 9-10, 1431 – 1449. · Zbl 0864.35036 · doi:10.1080/03605309608821233
[163] Clasine van Winter, Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vid. Selsk. 2 (1964), no. 8, 60 pp. (1964). · Zbl 0122.22403
[164] Luis Vazquez, Localised solutions of a non-linear spinor field, J. Phys. A 10 (1977), no. 8, 1361 – 1368.
[165] S. A. Vugal\(^{\prime}\)ter and G. M. Žislin, Finiteness of a discrete spectrum of many-particle Hamiltonians in symmetry spaces (coordinate and momentum representations), Teoret. Mat. Fiz. 32 (1977), no. 1, 70 – 87 (Russian, with English summary).
[166] M. Wakano. Intensely localized solutions of the classical Dirac-Maxwell field equations. Progr. Theor. Phys. 35(6) (1966), 1117-1141.
[167] H. Wallmeier, W. Kutzelnigg. Use of the squared Dirac operator in variational relativistic calculations. Chem. Phys. Lett. 78(2)(1981), 341-346.
[168] Michael I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472 – 491. · Zbl 0583.35028 · doi:10.1137/0516034
[169] Hermann Weyl, A remark on the coupling of gravitation and electron, Physical Rev. (2) 77 (1950), 699 – 701. · Zbl 0040.27801
[170] Rainer Wüst, Dirac operations with strongly singular potentials. Distinguished self-adjoint extensions constructed with a spectral gap theorem and cut-off potentials, Math. Z. 152 (1977), no. 3, 259 – 271. · Zbl 0361.35051 · doi:10.1007/BF01488968
[171] G. M. Žislin, A study of the spectrum of the Schrödinger operator for a system of several particles, Trudy Moskov. Mat. Obšč. 9 (1960), 81 – 120 (Russian).
[172] G. M. Žislin and A. G. Sigalov, The spectrum of the energy operator for atoms with fixed nuclei on subspaces corresponding to irreducible representations of the group of permutations, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 835 – 860 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.