×

Anchor maps and stable modules in depth two. (English) Zbl 1170.16030

Summary: An algebra extension \(A\mid B\) is right depth two if its tensor-square \(A\otimes_BA\) is in the Dress category \(\mathbf{Add}{_AA_B}\). We consider necessary conditions for right, similarly left, D2 extensions in terms of partial \(A\)-invariance of two-sided ideals in \(A\) contracted to the centralizer. Finite dimensional algebras extending central simple algebras are shown to be depth two. Following P. Xu, left and right bialgebroids over a base algebra \(R\) may be defined in terms of anchor maps, or representations on \(R\). The anchor maps for the bialgebroids \(S=\text{End}{_BA_B}\) and \(T=\text{End}{_AA \otimes_BA_A}\) over the centralizer \(R=C_A(B)\) are the modules \(_SR\) and \(R_T\) studied by L. Kadison [J. Algebra Appl. 6, No. 3, 505-526 (2007; Zbl 1140.16017), Contemp. Math. 391, 149-156 (2005; Zbl 1102.16023)], and L. Kadison and B. Külshammer [Commun. Algebra 34, No. 9, 3103-3122 (2006; Zbl 1115.16020)], which provide information about the bialgebroids and the extension [L. Kadison, Bull. Belg. Math. Soc. - Simon Stevin 12, No. 2, 275-293 (2005; Zbl 1105.16037)]. The anchor maps for the Hopf algebroids of M. Khalkhali and B. Rangipour [Lett. Math. Phys. 70, No. 3, 259-272 (2004; Zbl 1067.58007)] and L. Kadison [Trends in Mathematics, 247-264 (2008; Zbl 1167.16033)] reverse the order of right multiplication and action by a Hopf algebra element, and lift to the isomorphism of F. Van Oystaeyen and F. Panaite [Appl. Categ. Struct. 14, No. 5-6, 627-632 (2006; Zbl 1107.16039)]. We sketch a theory of stable \(A\)-modules and their endomorphism rings and generalize the smash product decomposition of L. Kadison [Proc. Am. Math. Soc. 131, No. 10, 2993-3002 (2003; Zbl 1033.16017), Proposition 1.1] to any \(A\)-module. We observe that H.-J. Schneider’s coGalois theory [in Isr. J. Math. 72, No. 1/2, 167-195 (1990; Zbl 0731.16027)] provides examples of codepth two, such as the quotient epimorphism of a finite dimensional normal Hopf subalgebra. A homomorphism of finite dimensional coalgebras is codepth two if and only if its dual homomorphism of algebras is depth two.

MSC:

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
16D90 Module categories in associative algebras
16L60 Quasi-Frobenius rings
16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
13B05 Galois theory and commutative ring extensions
17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] Brzeziński, T., Militaru, G.: Bialgebroids, {\(\times\)} A -bialgebras and duality. J. Algebra 251, 279–294 (2002) · Zbl 1003.16033 · doi:10.1006/jabr.2001.9101
[2] Brzeziński, T., Wisbauer, R.: Corings and Comodules. In: LMS, vol. 309. Cambridge University Press, UK (2003) · Zbl 1035.16030
[3] Böhm, G.: Integral theory for Hopf algebroids. Algebr. Represent. Theory 8(4), 563–599 (2005) · Zbl 1137.16037 · doi:10.1007/s10468-005-8760-0
[4] Böhm, G., Szlachányi, K.: Hopf algebroids with bijective antipodes: axioms, integrals and duals. J. Algebra 274, 708–750 (2004) · Zbl 1080.16035 · doi:10.1016/j.jalgebra.2003.09.005
[5] Connes, A., Moscovici, H.: Rankin–Cohen brackets and the Hopf algebra of transverse geometry. Mosc. Math. J. 4, 111–130 (2004) · Zbl 1122.11024
[6] Curtis, C.W., Reiner, I.: Methods of Representation Theory, vol. 1. Wiley, New York (1990) · Zbl 0698.20001
[7] Iovanov, M.C.: Extensions of corings: Frobenius extensions. Comm. Algebra (2006), preprint · Zbl 1147.16026
[8] Kadison, L.: New examples of Frobenius extensions. In: Univ. Lect. Series, vol. 14. American Mathematical Society, Providence, RI (1999) · Zbl 0929.16036
[9] Kadison, L.: Hopf algebroids and H-separable extension. Proc. Amer. Math. Soc. 131, 2993–3002 (2003) · Zbl 1033.16017 · doi:10.1090/S0002-9939-02-06876-4
[10] Kadison, L.: Centralizers and induction. J. Alg. & Appl., RA/0505004 (2005), preprint · Zbl 1140.16017
[11] Kadison, L.: Hopf algebroids and Galois extensions. Bull. Belg. Math. Soc. Simon Stevin 12, 275–293 (2005) · Zbl 1105.16037
[12] Kadison, L.: Hopf algebroids and pseudo-Galois extensions. QA/0508411 (2005), preprint · Zbl 1105.16037
[13] Kadison, L.: Depth two and the Galois coring. Contemp. Math 391, 149–156 (2005) · Zbl 1102.16023
[14] Kadison, L.: Depth two for infinite index subalgebras. QA/0607350 (2006), preprint · Zbl 1115.16019
[15] Kadison, L.: An endomorphism ring theorem for Galois and D2 extensions. J. Algebra 305, 163–184 (2006) · Zbl 1115.16019 · doi:10.1016/j.jalgebra.2006.01.013
[16] Kadison, L.: Codepth two and related topics. Appl. Categ. Struct. QA/0601001 (2006), preprint · Zbl 1161.16030
[17] Kadison, L., Külshammer, B.: Depth two, normality and a trace ideal condition for Frobenius extensions. Comm. Algebra 34, 3103–3122 (2006) · Zbl 1115.16020 · doi:10.1080/00927870600650291
[18] Kadison, L., Nikshych, D.: Hopf algebra actions on strongly separable extensions of depth two. Adv. Math. 163, 258–286 (2001) · Zbl 1029.46098 · doi:10.1006/aima.2001.2003
[19] Kadison, L., Szlachányi, K.: Bialgebroid actions on depth two extensions and duality. Adv. Math. 179, 75–121 (2003) · Zbl 1049.16022 · doi:10.1016/S0001-8708(02)00028-2
[20] Khalkhali, M., Rangipour, B.: Para-Hopf algebroids and their cyclic cohomology. Lett. Math. Phys. 70, 259–272 (2004) · Zbl 1067.58007 · doi:10.1007/s11005-004-4303-6
[21] Lu, J.-H.: Hopf algebroids and quantum groupoids. Internat. J. Math. 7, 47–70 (1996) · Zbl 0884.17010 · doi:10.1142/S0129167X96000050
[22] Montgomery, S.: Hopf algebras and their actions on rings. In: CBMS Regional Conference Series in Math, vol. 82. American Mathematical Society, Providence, RI (1993) · Zbl 0793.16029
[23] Van Oystaeyen F., Panaite, F.: Some bialgebroids constructed by Kadison and Connes–Moscovici are isomorphic. Appl. Categ. Struct. QA/0508638 (2006), in press · Zbl 1107.16039
[24] Schneider, H.-J.: Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72, 167–195 (1990) · Zbl 0731.16027 · doi:10.1007/BF02764619
[25] Schneider, H.-J.: Representation theory of Hopf Galois extensions. Israel J. Math. 72, 196–231 (1990) · Zbl 0751.16015 · doi:10.1007/BF02764620
[26] Schneider, H.-J.: Some remarks on exact sequences of quantum groups. Comm. Algebra 21, 3337–3357 (1993) · Zbl 0801.16040 · doi:10.1080/00927879308824733
[27] da Silva, A.C., Weinstein, A.: Geometric models for noncommutative algebras, In: Berkeley Math. Lect. Notes, vol. 10. American Mathematical Society, (1999) · Zbl 1135.58300
[28] Xu, P.: Quantum groupoids. Comm. Math. Phys. 216, 539–581 (2001) · Zbl 0986.17003 · doi:10.1007/s002200000334
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.