×

Hopf algebra actions on strongly separable extensions of depth two. (English) Zbl 1029.46098

Summary: We bring together ideas in analysis on Hopf *-algebra actions on \(\text{II}_1\) subfactors of finite Jones index [F. M. Goodman, P. de la Harpe and V. F. R. Jones, Coxeter graphs and towers of algebras, Springer, New York (1989; Zbl 0698.46050); W. Szymański, Proc. Am. Math. Soc. 120, No. 2, 519-528 (1994; Zbl 0802.46076)] and algebraic characterizations of Frobenius, Galois and cleft Hopf extensions [Y. Doi and M. Takeuchi, Commun. Algebra 14, 801-817 (1986; Zbl 0589.16011); F. Kasch, Sitzungsber. Heidelberger Akad. Wiss., Math.-Nat. Kl. 1960/61, 89-109 (1961; Zbl 0104.26201); H. F. Kreimer and M. Takeuchi, Indiana Univ. Math. J. 30, 675-692 (1981; Zbl 0451.16005)] to prove a non-commutative algebraic analogue of the following classical theorem: a finite degree field extension is Galois iff it is separable and normal. Suppose \(N\hookrightarrow M\) is a separable Frobenius extension of \(k\)-algebras with trivial centralizer \(C_M(N)\) and split as \(N\)-bimodules. Let \(M_1:=\text{End}(M_N)\) and \(M_2:=\text{End}(M_1)_M\) be the endomorphism algebras in the Jones tower \(N\hookrightarrow M\hookrightarrow M_1\hookrightarrow M_2\). We place depth 2 conditions on its second centralizers \(A:=C_{M_1}(N)\) and \(B:=C_{M_2}(M)\). We prove that \(A\) and \(B\) are semisimple Hopf algebras dual to one another, that \(M_1\) is a smash product of \(M\) and \(A\), and that \(M\) is a \(B\)-Galois extension of \(N\).

MSC:

46L37 Subfactors and their classification
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
46L35 Classifications of \(C^*\)-algebras

References:

[1] Blattner, R. J.; Cohen, M.; Montgomery, S., Crossed products and inner actions of Hopf algebras, Trans. A.M.S., 298, 671-711 (1986) · Zbl 0619.16004
[2] DeMeyer, F., The trace map and separable algebras, Osaka J. Math., 3, 7-11 (1966) · Zbl 0154.28502
[3] Doi, Y.; Takeuchi, M., Cleft comodule algebras for a bialgebra, Comm. Algebra, 14, 801-818 (1986) · Zbl 0589.16011
[4] Doi, Y., Hopf extensions and Maschke type theorems, Israel J. Math., 72, 99-108 (1990) · Zbl 0731.16025
[5] Elliger, S., Über Automorphismen und Derivationen von Ringen, J. Reine Ang. Mat., 277, 155-177 (1975) · Zbl 0321.13003
[6] Enock, M.; Nest, R., Irreducible inclusions of factors and multiplicative unitaries, J. Func. Analysis, 137, 466-543 (1996) · Zbl 0847.22003
[7] Etingof, P.; Gelaki, S., On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic, Internat. Math. Res. Notices, 16, 851-864 (1998) · Zbl 0918.16027
[8] Frobenius, F. G., (Serre, J.-P., Gesammelte Abhandlungen (1968), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0169.28901
[9] Goodman, F.; de la Harpe, P.; Jones, V. F.R., Coxeter Graphs and Towers of Algebras. Coxeter Graphs and Towers of Algebras, M.S.R.I. Publ., 14 (1989), Springer: Springer Heidelberg · Zbl 0698.46050
[10] Hirata, K.; Sugano, K., On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan, 18, 360-373 (1966) · Zbl 0178.36802
[11] Kadison, L., New Examples of Frobenius Extensions. New Examples of Frobenius Extensions, University Lecture Series, 14 (1999), A.M.S: A.M.S Providence · Zbl 0929.16036
[12] Kadison, L., The Jones polynomial and certain separable Frobenius extensions, J. Algebra, 186, 461-475 (1996) · Zbl 0880.16011
[13] F. Kasch, Projektive Frobenius erweiterungen, Sitzungsber. Heidelberg. Akad. Wiss. Math.-Natur. Kl.1960/1961, 89-109.; F. Kasch, Projektive Frobenius erweiterungen, Sitzungsber. Heidelberg. Akad. Wiss. Math.-Natur. Kl.1960/1961, 89-109. · Zbl 0104.26201
[14] Kreimer, H.; Takeuchi, M., Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J., 30, 675-692 (1981) · Zbl 0451.16005
[15] Lang, S., Algebra (1993), Addison-Wesley: Addison-Wesley New York · Zbl 0848.13001
[16] Longo, R., A duality for Hopf algebras and for subfactors I, Commun. Math. Phys., 159, 133-150 (1994) · Zbl 0802.46075
[17] Montgomery, S., Hopf Algebras and Their Actions on Rings. Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Series in Math., 82 (1993), A.M.S: A.M.S Providence · Zbl 0793.16029
[18] Morita, K., Adjoint pairs of functors and Frobenius extensions, Sc. Rep. T.K.D. Sect. A, 9, 40-71 (1965) · Zbl 0163.28602
[19] Nikshych, D.; Vainerman, L., A characterization of depth 2 subfactors of \(II_1\) factors, J. Func. Analysis, 171, 278-307 (2000) · Zbl 1010.46063
[20] Pierce, R., Associative Algebras. Associative Algebras, Grad. Text in Math., 88 (1982), Springer: Springer Heidelberg · Zbl 0497.16001
[21] Pimsner, M.; Popa, S., Entropy and index for subfactors, Ann. Sci. Ecole Norm. Sup. (4), 19, 57-106 (1986) · Zbl 0646.46057
[22] Sommerhäuser, Y., On Kaplansky’s conjectures, (van Oysteyen, F.; Saorin, M., Interactions between Ring Theory and Representations of Algebras. Interactions between Ring Theory and Representations of Algebras, Lecture Notes, 210 (2000), Marcel Dekker: Marcel Dekker New York) · Zbl 0974.16037
[23] Steinitz, E., Algebraische Theorie den Körpern, J. Reine Ang. Mat., 137, 167-309 (1909) · JFM 41.0445.03
[24] Szymański, W., Finite index subfactors and Hopf algebra crossed products, Proc. Amer. Math. Soc., 120, 519-528 (1994) · Zbl 0802.46076
[25] Ulbrich, K. H., Galois Erweiterungen von nicht-kommutativen Ringen, Comm. Algebra, 10, 655-672 (1982) · Zbl 0489.16026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.