×

The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence. (English) Zbl 1237.20028

Summary: We study the pure braid groups \(P_n(\mathbb RP^2)\) of the real projective plane \(\mathbb RP^2\), and in particular the possible splitting of the Fadell-Neuwirth short exact sequence \(1\to P_m(\mathbb RP^2\setminus\{x_1,\dots,x_n\})\hookrightarrow P_{n+m}(\mathbb RP^2)@>p_*>>P_n(\mathbb RP^2)\to 1\), where \(n\geq 2\) and \(m\geq 1\), and \(p_*\) is the homomorphism which corresponds geometrically to forgetting the last \(m\) strings. This problem is equivalent to that of the existence of a section for the associated fibration \(p\colon F_{n+m}(\mathbb RP^2)\to F_n(\mathbb RP^2)\) of configuration spaces.
J. van Buskirk proved [Trans. Am. Math. Soc. 122, 81-97 (1966; Zbl 0138.19103)] that \(p\) and \(p_*\) admit a section if \(n=2\) and \(m=1\). Our main result in this paper is to prove that there is no section if \(n\geq 3\). As a corollary, it follows that \(n=2\) and \(m=1\) are the only values for which a section exists. As part of the proof, we derive a presentation of \(P_n(\mathbb RP^2)\): this appears to be the first time that such a presentation has been given in the literature.

MSC:

20F36 Braid groups; Artin groups
57M25 Knots and links in the \(3\)-sphere (MSC2010)
20F05 Generators, relations, and presentations of groups
55R80 Discriminantal varieties and configuration spaces in algebraic topology

Citations:

Zbl 0138.19103

References:

[1] Artin E. (1925). Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg 4: 47–72 · JFM 51.0450.01 · doi:10.1007/BF02950718
[2] Artin E. (1947). Theory of braids. Ann. Math. 48: 101–126 · Zbl 0030.17703 · doi:10.2307/1969218
[3] Artin E. (1947). Braids and permutations. Ann. Math. 48: 643–649 · Zbl 0030.17802 · doi:10.2307/1969131
[4] Baues, H.J.: Obstruction Theory on Homotopy Cclassification of Maps. Lecture Notes in Mathematics, vol. 628, Springer-Verlag, Berlin (1977) · Zbl 0361.55017
[5] Bellingeri P. (2004). On presentations of surface braid groups. J. Algebra 274: 543–563 · Zbl 1081.20045 · doi:10.1016/j.jalgebra.2003.12.009
[6] Birman J.S. (1969). On braid groups. Commun. Pure Appl. Math. 22: 41–72 · Zbl 0157.30904 · doi:10.1002/cpa.3160220104
[7] Cohen F.R. and Gitler S. (2002). On loop spaces of configuration spaces. Trans. Am. Math. Soc. 354: 1705–1748 · Zbl 0992.55006 · doi:10.1090/S0002-9947-02-02948-3
[8] Fadell E. (1962). Homotopy groups of configuration spaces and the string problem of Dirac. Duke Math. J. 29: 231–242 · Zbl 0122.17803 · doi:10.1215/S0012-7094-62-02924-1
[9] Fadell, E., Husseini, S.Y.: Geometry and Topology of Configuration Spaces. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2001) · Zbl 0962.55001
[10] Fadell E. and Neuwirth L. (1962). Configuration spaces. Math. Scand. 10: 111–118 · Zbl 0136.44104
[11] Fadell E. and Van Buskirk J. (1962). The braid groups of \(\mathbb{E}^2\) and \(\mathbb{S}^2\) . Duke Math. J. 29: 243–257 · Zbl 0122.17804 · doi:10.1215/S0012-7094-62-02925-3
[12] Falk M. and Randell R. (1985). The lower central series of a fiber-type arrangement. Invent. Math. 82: 77–88 · Zbl 0574.55010 · doi:10.1007/BF01394780
[13] Fox R.H. and Neuwirth L. (1962). The braid groups. Math. Scand. 10: 119–126 · Zbl 0117.41101
[14] Gonçalves, D.L., Guaschi, J.: On the structure of surface pure braid groups. J. Pure Appl. Algebra 182, 33–64 (2003) (due to a printer’s error, this article was republished in its entirety with the reference 186 187–218 (2004))
[15] Gonçalves D.L. and Guaschi J. (2004). The braid groups of the projective plane. Algebraic Geom. Topol. 4: 757–780 · Zbl 1056.20024 · doi:10.2140/agt.2004.4.757
[16] Gonçálves D.L. and Guaschi J. (2007). The quaternion group as a subgroup of the sphere braid groups. Bull. Lond. Math. Soc. 39: 232–234 · Zbl 1120.20035 · doi:10.1112/blms/bdl041
[17] Gonçálves, D.L., Guaschi, J.: The lower central and derived series of the braid groups of the sphere. Chapters 2–3 of arXiv preprint \(\mathtt {math.GT/0603701}\)
[18] Gonçalves, D.L., Guaschi, J.: On the structure of pure braid groups of non-orientable surfaces. (in preparation)
[19] González-Meneses J. (2001). New presentations of surface braid groups. J. Knot Theory Ramif. 10: 431–451 · Zbl 1030.20024 · doi:10.1142/S0218216501000949
[20] González-Meneses J. and Paris L. (2004). Vassiliev invariants for braids on surfaces. Trans. Am. Math. Soc. 356: 219–243 · Zbl 1036.57003 · doi:10.1090/S0002-9947-03-03116-7
[21] Johnson, D.L.: Presentation of Groups, LMS Lecture Notes, vol. 22. Cambridge University Press (1976) · Zbl 0324.20040
[22] Murasugi K. (1982). Seifert fibre spaces and braid groups. Proc. Lond. Math. Soc. 44: 71–84 · Zbl 0489.57003 · doi:10.1112/plms/s3-44.1.71
[23] Paris L. and Rolfsen D. (1999). Geometric subgroups of surface braid groups. Ann. Inst. Fourier 49: 417–472 · Zbl 0962.20028
[24] Rolfsen D. and Zhu J. (1998). Braids, orderings and zero divisors. J. Knot Theory Ramif. 7: 837–841 · Zbl 0928.20031 · doi:10.1142/S0218216598000425
[25] Scott G.P. (1970). Braid groups and the group of homeomorphisms of a surface. Proc. Camb. Phil. Soc. 68: 605–617 · Zbl 0203.56302 · doi:10.1017/S0305004100076593
[26] Van Buskirk J. (1966). Braid groups of compact 2-manifolds with elements of finite order. Trans. Am. Math. Soc. 122: 81–97 · Zbl 0138.19103 · doi:10.2307/1994502
[27] Wang J.H. (2002). On the braid groups for \({\mathbb{R}}P^2\) . J. Pure Appl. Algebra 166: 203–227 · Zbl 1113.55302 · doi:10.1016/S0022-4049(01)00050-0
[28] Whitehead, G.W.: Elements of Homotopy Theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York (1978) · Zbl 0406.55001
[29] Zariski O. (1937). The topological discriminant group of a Riemann surface of genus p. Am. J. Math. 59: 335–358 · Zbl 0016.32502 · doi:10.2307/2371416
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.