×

Chemomechanical coupling of molecular motors: thermodynamics, network representations, and balance conditions. (English) Zbl 1134.82043

Summary: Molecular motors are considered that convert the chemical energy released from the hydrolysis of adenosine triphosphate (ATP) into mechanical work. Such a motor represents a small system that is coupled to a heat reservoir, a work reservoir, and particle reservoirs for ATP, adenosine diphosphate (ADP), and inorganic phosphate (P). The discrete state space of the motor is defined in terms of the chemical composition of its catalytic domains. Each motor state represents an ensemble of molecular conformations that are thermally equilibrated. The motor states together with the possible transitions between neighboring states define a network representation of the motor. The motor dynamics is described by a continuous-time Markov process (or master equation) on this network. The consistency between thermodynamics and network dynamics implies (i) local and nonlocal balance conditions for the transition rates of the motor and (ii) an underlying landscape of internal energies for the motor states. The local balance conditions can be interpreted in terms of constrained equilibria between neighboring motor states; the nonlocal balance conditions pinpoint chemical and/or mechanical nonequilibrium.

MSC:

82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
60J25 Continuous-time Markov processes on general state spaces
92C40 Biochemistry, molecular biology
92C05 Biophysics

Software:

SPRINT

References:

[1] Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton, 1 edn. Sinauer, New York (2001)
[2] Schliwa, M., Woehlke, G.: Molecular motors. Nature 422, 759–765 (2003) · doi:10.1038/nature01601
[3] Vale, R.D.: The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003) · doi:10.1016/S0092-8674(03)00111-9
[4] Mallik, R., Gross, S.P.: Molecular motors: Strategies to get along. Curr. Biol. 14, R971–R982 (2004) · doi:10.1016/j.cub.2004.10.046
[5] Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993) · doi:10.1038/365721a0
[6] Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Kinesin walks hand-over-hand. Science 303, 676–678 (2004) · doi:10.1126/science.1093753
[7] Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005) · doi:10.1038/nature03528
[8] Schnitzer, M.J., Block, S.M.: Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997) · doi:10.1038/41111
[9] Hackney, D.D.: The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. Proc. Natl. Acad. Sci. 102, 18338–18343 (2005) · doi:10.1073/pnas.0505288102
[10] Gilbert, S.P., Moyer, M.L., Johnson, K.A.: Alternating site mechanism of the kinesin ATPase. Biochemistry 37, 792–799 (1998) · doi:10.1021/bi971117b
[11] Romberg, L., Vale, R.D.: Chemomechanical cycle of kinesin differs from that of myosin. Nature 361, 168–170 (1993) · doi:10.1038/361168a0
[12] Guydosh, N.R., Block, S.M.: Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc. Natl. Acad. Sci. 103, 8054–8059 (2006) · doi:10.1073/pnas.0600931103
[13] Visscher, K., Schnitzer, M.J., Block, S.M.: Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999) · doi:10.1038/22146
[14] Schnitzer, M.J., Visscher, K., Block, S.M.: Force production by single kinesin motors. Nature Cell Biol. 2, 718–723 (2000) · doi:10.1038/35036345
[15] Schief, W.R., Clark, R.H., Crevenna, A.H., Howard, J.: Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. Proc. Natl. Acad. Sci. 101, 1183–1188 (2004) · doi:10.1073/pnas.0304369101
[16] Liepelt, S., Lipowsky, R.: Steady-state balance conditions for molecular motor cycles and stochastic nonequilibrium processes. Europhys. Lett. 77, 50002 (2007) · doi:10.1209/0295-5075/77/50002
[17] Liepelt, S., Lipowsky, R.: Kinesin’s network of chemomechanical motor cycles. Phys. Rev. Lett. 98, 258102 (2007) · Zbl 1134.82043 · doi:10.1103/PhysRevLett.98.258102
[18] Lipowsky, R., Chai, Y., Klumpp, S., Liepelt, S., Müller, M.J.I.: Molecular motor traffic: From biological nanomachines to macroscopic transport. Physica A 372, 34–51 (2006) · doi:10.1016/j.physa.2006.05.019
[19] Hill, T.L.: Free Energy Transduction and Biochemical Cycle Kinetics, 1 edn. Springer, New York (1989)
[20] Peskin, C.S., Oster, G.: Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, 202S (1995)
[21] Jülicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1281 (1997) · doi:10.1103/RevModPhys.69.1269
[22] Parmeggiani, A., Jülicher, F., Ajdari, A., Prost, J.: Energy transduction of isothermal ratchets: Generic aspects and specific examples close to and far from equilibrium. Phys. Rev. E 60, 2127–2140 (1999) · doi:10.1103/PhysRevE.60.2127
[23] Fisher, M.E., Kolomeisky, A.: The force exerted by a molecular motor. Proc. Natl. Acad. Sci. 96, 6597–6602 (1999) · doi:10.1073/pnas.96.12.6597
[24] Lipowsky, R., Harms, T.: Molecular motors and nonuniform ratchets. Eur. Biophys. J. 29, 542–548 (2000) · doi:10.1007/s002490000092
[25] Lipowsky, R.: Universal aspects of the chemo-mechanical coupling for molecular motors. Phys. Rev. Lett. 85, 4401–4404 (2000) · doi:10.1103/PhysRevLett.85.4401
[26] Fisher, M.E., Kolomeisky, A.: Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci. 98, 7748–7753 (2001) · doi:10.1073/pnas.141080498
[27] Qian, H.: Nonequilibrium steady state circulation and heat dissipation functional. Phys. Rev. E 64, 022101 (2001) · doi:10.1103/PhysRevE.64.022101
[28] Lipowsky, R., Jaster, N.: Molecular motor cycles: From ratchets to networks. J. Stat. Phys. 110, 1141–1167 (2003) · Zbl 1030.92011 · doi:10.1023/A:1022101011650
[29] Lipowsky, R., Klumpp, S.: Life is motion–multiscale motility of molecular motors. Physica A 352, 53–112 (2005) · doi:10.1016/j.physa.2004.12.034
[30] Fisher, M.E., Kim, Y.C.: Kinesin crouches to sprint but resists pushing. Proc. Natl. Acad. Sci. 102, 16209–16214 (2005) · doi:10.1073/pnas.0507802102
[31] Seifert, U.: Fluctuation theorem for a single enzym or molecular motor. Europhys. Lett. 70, 36–41 (2005) · doi:10.1209/epl/i2005-10003-9
[32] Qian, H.: Open-System nonequilibrium steady state: Statistical thermodynamics, fluctuations, and chemical oscillations. J. Phys. Chem. B 110, 15063–15074 (2006) · doi:10.1021/jp061858z
[33] Polanyi, M., Wigner, E.: Über die Interferenz von Eigenschwingungen als Ursache von Energieschwankungen und chemischen Umsetzungen. Z. Phys. Chem. (Leipzig) A 139, 439–452 (1928)
[34] Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935) · doi:10.1063/1.1749604
[35] Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Utrecht) 7, 284–304 (1940) · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[36] Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990) · doi:10.1103/RevModPhys.62.251
[37] van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992) · Zbl 0511.60038
[38] Hill, T.L.: Theoretical formulation for the sliding filament model of contraction of striated muscle: Part I. Prog. Biophys. Mol. Biol. 28, 267–340 (1974) · doi:10.1016/0079-6107(74)90020-0
[39] Jülicher, F.: Force and motion generation of molecular motors: A generic description. In: Müller, S., Parisi, J., Zimmermann, W. (eds.) Transport and Structure, p. 46. Springer, Berlin (1999)
[40] Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602/1–040602/4 (2005) · doi:10.1103/PhysRevLett.95.040602
[41] Schmiedl, T., Speck, T., Seifert, U.: Entropy production for mechanically or chemically driven biomolecules. J. Stat. Phys. 128, 77–93 (2007) · Zbl 1117.82032 · doi:10.1007/s10955-006-9148-1
[42] Alberty, R.A.: Thermodynamics of the hydrolysis of ATP as a function of temperature, pH, pMg, and ionic strength. J. Phys. Chem. B 107, 12324–12330 (2003) · doi:10.1021/jp030576l
[43] Hill, T.L., Simmons, R.M.: Free energy levels and entropy production associated with biochemical kinetic diagrams. Proc. Natl. Acad. Sci. 73, 95–99 (1976) · doi:10.1073/pnas.73.1.95
[44] Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997) · Zbl 0873.60043
[45] Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847) · doi:10.1002/andp.18471481202
[46] Tutte, W.T.: Graph Theory. Cambridge University Press, Cambridge (2001) · Zbl 0964.05001
[47] Hill, T.L.: Studies in irreversible thermodynamics, IV, diagrammatic representation of steady state fluxes for unimolecular systems. J. Theor. Biol. 10, 442–459 (1966) · doi:10.1016/0022-5193(66)90137-8
[48] Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571–585 (1976) · doi:10.1103/RevModPhys.48.571
[49] Hill, T.L., Chen, Y.-D.: Stochastics of cycle completions (fluxes) in biochemical kinetic diagrams. Proc. Natl. Acad. Sci. 72, 1291–1295 (1975) · doi:10.1073/pnas.72.4.1291
[50] Kohler, H.-H., Vollmerhaus, E.: The frequency of cyclic processes in biological multistate systems. J. Math. Biol. 9, 275–290 (1980) · Zbl 0433.60075 · doi:10.1007/BF00276029
[51] Luo, J.L., van den Broeck, C., Nicolis, G.: Stability criteria and fluctuations around non-equilibrium states. Z. Physik B 56, 165–170 (1984) · doi:10.1007/BF01469698
[52] Lebowitz, J.L., Spohn, H.: A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999) · Zbl 0934.60090 · doi:10.1023/A:1004589714161
[53] Maes, C., van Wieren, M.H.: A Markov model for kinesin. J. Stat. Phys. 112, 329–355 (2003) · Zbl 1016.92010 · doi:10.1023/A:1023691923564
[54] De Groot, S.R., Mazur, P.: Grundlagen der Thermodynamik irreversibler Prozesse. Hochschultaschenbücher-Verlag, Bibliographisches Institut, Mannheim (1969)
[55] Evans, D.J., Cohen, E.G.D., Morris, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993) · Zbl 0966.82507 · doi:10.1103/PhysRevLett.71.2401
[56] Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999) · doi:10.1103/PhysRevE.60.2721
[57] Jarzynski, C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 77–102 (2000) · Zbl 1006.82022 · doi:10.1023/A:1018670721277
[58] Andrieux, D., Gaspard, P.: Fluctuation theorems and the nonequilibrium thermodynamics of molecular motors. Phys. Rev. E 74, 011906 (2006) · doi:10.1103/PhysRevE.74.011906
[59] Wallis, W.D.: A Beginners Guide to Graph Theory. Birkhäuser, Boston (2000) · Zbl 0946.05002
[60] Liepelt, S., Lipowsky, R.: ATP hydrolysis rate and efficiency of the molecular motor kinesin. (In preparation) · Zbl 1202.82069
[61] Valleriani, A., Liepelt, S., Lipowsky, R.: Sojourn time distribution for kinesin’s mechanical steps. (In preparation)
[62] Xing, J., Liao, J.-C., Oster, G.: Making ATP. Proc. Natl. Acad. Sci. 101, 16539–16546 (2005) · doi:10.1073/pnas.0507207102
[63] Walz, D., Caplan, S.R.: Energy coupling and thermokinetic balancing in enzyme kinetics–microscopic reversibility and detailed balance revisited. Cell Biophys. 12, 13–28 (1988)
[64] Walz, D.: Biothermokinetics of processes and energy conversion. Biochim. Biophys. Acta 1019, 171–224 (1990) · doi:10.1016/0005-2728(90)90196-B
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.