Skip to main content
Log in

The frequency of cyclic processes in biological multistate systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

Cyclic processes in stochastic models of macromolecular biological systems are considered. The diagram solution of the model equations (master equation) gives rise to special functions of the rate constants, called the circuit (or one-way cycle) fluxes. As Hill has shown, these functions are the fundamental theoretical components of the operational fluxes, i.e., of the rates of reaction, of transport, of energy conversion, etc. Evidence recently has been found by Monte Carlo simulations that the circuit fluxes can be interpreted as the frequencies of circuit completions. Making use of the theory of graphs, we prove that this physical interpretation of the circuit fluxes is generally valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berge, C.: The theory of graphs. London: Methuen & Co. 1962

    Google Scholar 

  • Berge, C.: Graphs and hypergraphs. Amsterdam-London: North-Holland Publishing Comp. 1973

    Google Scholar 

  • Chizmadjev, Y. A., Aityan, S. K.: Ion transport across sodium channels in biological membranes. J. Theor. Biol. 64, 429–453 (1977)

    Google Scholar 

  • Cleland, W. W.: Partition analysis and the concept of net rate constants as tools in enzyme kinetics. Biochemistry 14, 3220–3224 (1975)

    Google Scholar 

  • Cohen, M., Palti, Y., Adelman, W. J.: Ionic dependence of sodium currents in squid axons analyzed in terms of specific ion “channel” interactions. J. Membrane Biol. 24, 201–223 (1975)

    Google Scholar 

  • Eisenman, G., Sandblom, J., Neher, E.: Interactions in cation permeation through the gramicidin channel. Biophys. J. 22, 307–340 (1978)

    Google Scholar 

  • Fishman, S. N., Chodorov, B. I., Volkenstein, M. V.: Molecular mechanisms of membrane ionic permeability changes. Biochim. Biophys. Acta 225, 1–10 (1971)

    Google Scholar 

  • Harary, F.: Graph theory. Reading-Menlo Park-London-Don Mills: Addison-Wesley Publishing Comp. 1972

    Google Scholar 

  • Heckmann, K.: Single file diffusion. In: Biomembranes, Vol. 3 (K. Kreuzer, J. F. G. Slegers, eds.), pp. 127–153. New York: Plenum Publishing Corp. 1972

    Google Scholar 

  • Heckmann, K., Vollmerhaus, W., Kutschera, J., Vollmerhaus, E.: Mathematische Modelle für reaktionskinetische Phänomene. Z. Naturforsch. 24a, 664–673 (1969)

    Google Scholar 

  • Hill, T. L.: Studies in irreversible thermodynamics IV. Diagrammatic representation of steady state fluxes for unimolecular systems. J. Theor. Biol. 10, 442–459 (1966)

    Google Scholar 

  • Hill, T. L.: Thermodynamics for chemists and biologists. Reading-Menlo Park-London-Don Mills: Addison-Wesley Publishing Comp. 1968

    Google Scholar 

  • Hill, T. L.: Free energy transduction in biology. New York-San Francisco-London: Academic Press 1977

    Google Scholar 

  • Hill, T. L., Chen, Y.: On the theory of ion transport across the nerve membrane IV. Noise from the openclose kinetics of K+ channels. Biophys. J. 12, 948–959 (1972)

    Google Scholar 

  • Hill, T. L., Chen, Y.: Stochastics of cycle completions (fluxes) in biochemical kinetic diagrams. Proc. Nat. Acad. Sci. USA 72, 1291–1295 (1975)

    Google Scholar 

  • Hill, T. L., Kedem, O.: Studies in irreversible thermodynamics III. Models for steady state and active transport across membranes. J. Theor. Biol. 10, 399–441 (1966)

    Google Scholar 

  • Hille, B.: Ionic selectivity, saturation, and block in sodium channels: A four barrier model. J. Gen. Physiol. 66, 535–560 (1975)

    Google Scholar 

  • Hille, B., Schwarz, W.: Potassium channels as single-file pores. J. Gen. Physiol. 72, 409–442 (1978)

    Google Scholar 

  • Hladky, S. B., Urban, B. W., Haydon, D. A.: Ion movements in pores formed by gramicidin A. In: Membrane transport processes, Vol. 3 (D. F. Stevens, R. W. Tsien, eds.), pp. 89–103. New York: Raven Press 1979

    Google Scholar 

  • Keizer, J.: On the solutions and the steady state of a master equation. J. Stat. Phys. 6, 67–72 (1972)

    Google Scholar 

  • King, E. L., Altman, C.: Schematic method of deriving the rate laws for enzyme-catalyzed reactions. J. Phys. Chem. 60, 1375–1378 (1956)

    Google Scholar 

  • Kohler, H.-H.: A single-file model for potassium transport in squid giant axon. Biophys. J. 19, 125–140 (1977)

    Google Scholar 

  • Kohler, H.-H., Heckmann, K.: Unidirectional fluxes in saturated single-file pores of biological and artificial membranes I. Pores containing no more than one vacancy. J. Theor. Biol. 79, 381–401 (1979)

    Google Scholar 

  • Läuger, P.: Ion transport through pores: A rate-theory analysis. Biochim. Biophys. Acta 311, 423–441 (1973)

    Google Scholar 

  • Papoulis, A.: Probability, random variables, and stochastic processes. International student edition. Tokyo: McGraw-Hill Kogakusha 1965

    Google Scholar 

  • Porter, B.: Synthesis of dynamical systems. London: Nelson 1969

    Google Scholar 

  • Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571–585 (1976)

    Google Scholar 

  • Stein, W. D.: An algorithm for writing down flux equations for carrier kinetics, and its application to cotransport. J. Theor. Biol. 62, 467–478 (1976)

    Google Scholar 

  • Wilbrandt, W.: Carrier diffusion. In: Biomembranes, Vol. 3 (K. Kreuzer, J. F. G. Slegers, eds.), pp. 79–99. New York: Plenum Publishing Corp. 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohler, HH., Vollmerhaus, E. The frequency of cyclic processes in biological multistate systems. J. Math. Biology 9, 275–290 (1980). https://doi.org/10.1007/BF00276029

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276029

Key words

Navigation