×

Travelling-wave behaviour in a multiphase model of a population of cells in an artificial scaffold. (English) Zbl 1125.92030

Summary: This paper analyses travelling-wave behaviour in a recently-formulated multiphase model for the growth of biological tissue that comprises motile cells and water inside a porous scaffold [G. Lemon et al., ibid. 52, No. 5, 571–594 (2006; Zbl 1110.92016)]. The model arises in the context of tissue engineering, and its purpose is to study how cells migrate and proliferate inside porous biomaterials. In suitable limits, tissue growth in the model is shown to occur in the form of travelling waves that can propagate either forwards or backwards, depending on the values of the parameters. In the case where the drag force between the scaffold and the cells is non-zero, the growth of the aggregate can be analysed in terms of the propagation of a constant-speed wavefront in a semi-infinite domain.
A numerical (shooting) method is described for calculating the wave speed, and detailed results for how the speed varies with respect to the parameters are given. In the case where the drag force is zero, the size of the aggregate is shown either to grow or to shrink exponentially with time. These results may be of importance in determining the experimental factors that control tissue invasiveness in scaffolds thereby allowing greater control over engineered tissue growth.

MSC:

92C50 Medical applications (general)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
35Q92 PDEs in connection with biology, chemistry and other natural sciences

Citations:

Zbl 1110.92016
Full Text: DOI

References:

[1] Akay G., Birch M.A. and Bokhari M.A. (2004). Microcellular polyhipe polymer supports osteoblast growth and bone formation in vitro. Biomaterials 25: 3991–4000 · doi:10.1016/j.biomaterials.2003.10.086
[2] Byrne H.M., King J.R., McElwain D.L.S. and Preziosi L. (2003). A two-phase model of tumour growth. Appl. Math. Lett. 16: 567–573 · Zbl 1040.92015 · doi:10.1016/S0893-9659(03)00038-7
[3] Byrne H. and Preziosi L. (2003). Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20: 341–366 · Zbl 1046.92023 · doi:10.1093/imammb/20.4.341
[4] Cruywagen G.C., Maini P.K. and Murray J.D. (1994). Traveling waves in a tissue interaction-model for skin pattern-formation. J. Math. Biol. 33: 193–210 · Zbl 0808.92011 · doi:10.1007/BF00160179
[5] Forgacs G., Foty R.A., Shafrir Y. and Steinberg M.S. (1998). Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74: 2227–2234 · doi:10.1016/S0006-3495(98)77932-9
[6] Galban C.J. and Locke B.R. (1997). Analysis of cell growth in a polymer scaffold using a moving boundary approach. Biotechnol. Bioeng. 56: 422–432 · doi:10.1002/(SICI)1097-0290(19971120)56:4<422::AID-BIT7>3.0.CO;2-Q
[7] Gaudet C., Marganski W.A., Kim S., Brown C.T., Gunderia V., Dembo M. and Wong J.Y. (2003). Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J. 85: 3329–3335 · doi:10.1016/S0006-3495(03)74752-3
[8] Igoshin O.A., Mogilner A. and Welch R.D. (2001). Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc. Natl. Acad. Sci. 98: 14913–14918 · doi:10.1073/pnas.221579598
[9] Ikada Y. (2006). Challenges in tissue engineering. J. Roy. Soc. Interface 3: 589–601 · doi:10.1098/rsif.2006.0124
[10] King J.R. and Franks S.J. (2004). Mathematical analysis of some multi-dimensional tissue-growth models. Eur. J. Appl. Math. 15: 273–295 · Zbl 1066.35038 · doi:10.1017/S0956792504005480
[11] Landman K.A., Pettet G.J. and Newgreen D.F. (2003). Mathematical models of cell colonization of uniformly growing domains. Bull. Math. Biol. 65: 235–262 · Zbl 1334.92058 · doi:10.1016/S0092-8240(02)00098-8
[12] Langer R. and Vacanti J.P. (1993). Tissue engineering. Science 260: 920–926 · doi:10.1126/science.8493529
[13] Lemon G. and King J.R. (2007). Multiphase modelling of cell behaviour on artificial scaffolds: effects of nutrient depletion and spatially non-uniform porosity. Math. Med. Biol. 24: 57–83 · Zbl 1118.92024 · doi:10.1093/imammb/dql020
[14] Lemon G., King J.R., Byrne H.M., Jensen O.E. and Shakesheff K.M. (2006). Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. J. Math. Biol. 52: 571–594 · Zbl 1110.92016 · doi:10.1007/s00285-005-0363-1
[15] Levenberg, S., Langer, R.: Advances in Tissue Engineering. Current Topics in Developmental Biology, vol. 61. Elsevier, Amsterdam (2004)
[16] Liao S.S., Cui F.Z. and Zhu Y. (2004). Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite: nHAC/PLA. J. Bioact. Compat. Pol. 19: 117–130 · doi:10.1177/0883911504042643
[17] Lubkin S.R. and Jackson T. (2002). Multiphase mechanics of capsule formation in tumors. J. Biomech. Eng. 124: 237–243 · doi:10.1115/1.1427925
[18] Maini P.K., McElwain S. and Leavesley D. (2004). A travelling wave model to interpret a wound healing migration assay for human peritoneal mesothelial cells. Tissue Eng. 10: 475–482 · Zbl 1055.92025 · doi:10.1089/107632704323061834
[19] Maini P.K., McElwain S. and Leavesley D. (2004). Travelling waves in a wound healing assay. Appl. Math. Lett. 17: 575–580 · Zbl 1055.92025 · doi:10.1016/S0893-9659(04)90128-0
[20] Malda J., Woodfield T., Kooy F.K., Martens D.E., Tramper J., Rielse J., Vloodt F. and Blitterswijk C.A. (2004). The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials 25: 5773–5780 · doi:10.1016/j.biomaterials.2004.01.028
[21] Murray J.D. (2002). Mathematical Biology. Springer, New York · Zbl 1006.92001
[22] Olsen L., Sherratt J.A., Maini P.K. and Arnold F. (1997). A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol. 14: 261–281 · Zbl 0891.92016 · doi:10.1093/imammb/14.4.261
[23] Ramrattan N.N., Heijkants R.G.J.C., Tienen T.G.V., Schouten A.J., Veth R.P.H. and Buma P. (2005). Assessment of tissue ingrowth rates in polyurethane scaffolds for tissue engineering. Tissue Eng. 11: 1212–1223 · doi:10.1089/ten.2005.11.1212
[24] Sherratt J.A. and Chaplain M.A.J. (2001). A new mathematical model for avascular tumour growth. J. Math. Biol. 43: 291–312 · Zbl 0990.92021 · doi:10.1007/s002850100088
[25] Ward J.P. and King J.R. (1997). Mathematical modelling of avascular tumour growth. IMA J. Math. Appl. Med. Biol. 14: 36–69 · Zbl 0866.92011 · doi:10.1093/imammb/14.1.39
[26] Ward J.P. and King J.R. (1999). Mathematical modelling of avascular tumour growth II: modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16: 171–211 · Zbl 0943.92019 · doi:10.1093/imammb/16.2.171
[27] Ward J.P., King J.R., Koerber A.J., Croft J.M., Sockett R.E. and Williams P. (2003). Early development and quorum sensing in bacterial biofilms. J. Math. Biol. 47: 23–55 · Zbl 1038.92012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.