×

Regular algebras of dimension 4 and their \(A_\infty\)-Ext-algebras. (English) Zbl 1193.16014

Let \(k\) be an algebraically closed field. There are found 4 series of two-generated AS-regular \(\mathbb{Z}^2\)-graded associative \(k\)-algebras of global dimension 4 with two defining relations of degree 3 and 4. The generators have degrees \((1,0)\) and \((0,1)\). The defining relations depend on at most two parameters from \(k\). The list of algebras after deleting some special algebras in each series presents up to isomorphism all Noetherian generic in some sense AS regular two-generated algebras of global dimension 4.
These results are used for the problem of classification of quantum projective space of degree 3.

MSC:

16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16W50 Graded rings and modules (associative rings and algebras)
16S15 Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting)
16T20 Ring-theoretic aspects of quantum groups
14A22 Noncommutative algebraic geometry
16E10 Homological dimension in associative algebras

Software:

Maple

References:

[1] D. Anick, On the homology of associative algebras , Trans. Amer. Math. Soc. 296 (1986), 641–659. JSTOR: · Zbl 0598.16028 · doi:10.2307/2000383
[2] M. Artin and W. F. Schelter, Graded algebras of global dimension \(3\) , Adv. in Math. 66 (1987), 171–216. · Zbl 0633.16001 · doi:10.1016/0001-8708(87)90034-X
[3] M. Artin, L. W. Small, and J. J. Zhang, Generic flatness for strongly Noetherian algebras, J. Algebra 221 (1999), 579–610. · Zbl 0958.16024 · doi:10.1006/jabr.1999.7997
[4] M. Artin and J. T. Stafford, Noncommutative graded domains with quadratic growth , Invent. Math. 122 (1995), 231–276. · Zbl 0849.16022 · doi:10.1007/BF01231444
[5] -, Semiprime graded algebras of dimension two , J. Algebra 227 (2000), 68–123. · Zbl 0967.16021 · doi:10.1006/jabr.1999.8226
[6] M. Artin, J. Tate, and M. Van Den Bergh, “Some algebras associated to automorphisms of elliptic curves” in The Grothendieck Festschrift, Vol. I , Progr. Math. 86 , Birkhäuser, Boston, 1990, 33–85. · Zbl 0744.14024
[7] -, Modules over regular algebras of dimension \(3\) , Invent. Math. 106 (1991), 335–388. · Zbl 0763.14001 · doi:10.1007/BF01243916
[8] M. Artin and J. J. Zhang, Noncommutative projective schemes , Adv. Math. 109 (1994), 228–287. · Zbl 0833.14002 · doi:10.1006/aima.1994.1087
[9] G. M. Bergman, The diamond lemma for ring theory , Adv. in Math. 29 (1978), 178–218. · Zbl 0326.16019 · doi:10.1016/0001-8708(78)90010-5
[10] E. K. Ekström, “The Auslander condition on graded and filtered Noetherian rings” in Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) , Lecture Notes in Math. 1404 , Springer, Berlin, 1989, 220–245. · Zbl 0691.16020
[11] B. Keller, Bimodule complexes via strong homotopy actions , Algebr. Represent. Theory 3 (2000), 357–376. · Zbl 0968.18005 · doi:10.1023/A:1009954126727
[12] -, Introduction to \(A\)-infinity algebras and modules , Homology Homotopy Appl. 3 (2001), 1–35. · Zbl 0989.18009 · doi:10.4310/HHA.2001.v3.n1.a1
[13] -, “\(A\)-infinity algebras in representation theory” in Representations of Algebra, Vols. I, II , Beijing Norm. Univ. Press, Beijing, 2002, 74–86. · Zbl 1086.18007
[14] L. Le Bruyn and S. P. Smith, Homogenized \(\mathfraksl(2)\), Proc. Amer. Math. Soc. 118 (1993), 725–730. JSTOR: · Zbl 0795.16029 · doi:10.2307/2160112
[15] L. Le Bruyn, S. P. Smith, and M. Van Den Bergh, Central extensions of three-dimensional Artin-Schelter regular algebras , Math. Z. 222 (1996), 171–212. · Zbl 0876.17019 · doi:10.1007/PL00004532
[16] T. Levasseur, Some properties of noncommutative regular graded rings , Glasgow Math. J. 34 (1992), 277–300. · Zbl 0824.16032 · doi:10.1017/S0017089500008843
[17] T. Levasseur and S. P. Smith, Modules over the \(4\)-dimensional Sklyanin algebra , Bull. Soc. Math. France 121 (1993), 35–90. · Zbl 0823.17020
[18] D.-M. Lu, J. H. Palmieri, Q.-S. Wu, and J. J. Zhang, “\(A_\infty\)-algebras for ring theorists” in Proceedings of the International Conference on Algebra (Suzhou, China, 2002) , Algebra Colloq. 11 , Springer, Hong Kong, 2004, 91–128. · Zbl 1066.16049
[19] -, \(A\)-infinity structure on Ext -algebras, · Zbl 1231.16008
[20] -, Koszul equivalences in \(A_\infty\)-algebras , in preparation. · Zbl 1191.16011
[21] D.-M. Lu, Q.-S. Wu, and J. J. Zhang, Regular algebras of type (12221) and their Ext -algebras, in preparation.
[22] J. C. Mcconnell and J. C. Robson, Noncommutative Noetherian Rings, Pure Appl. Math. (N.Y.), Wiley, Chichester, England, 1987. · Zbl 0644.16008
[23] W. Schelter, Affine, private communication, 1986.
[24] B. Shelton and M. Vancliff, Embedding a quantum rank three quadric in a quantum \(\mathbb P^3\), Comm. Algebra 27 (1999), 2877–2904. · Zbl 0936.16023 · doi:10.1080/00927879908826599
[25] -, Some Quantum \(\mathbb P^3\)s with one point, Comm. Algebra 27 (1999), 1429–1443. · Zbl 0926.16037 · doi:10.1080/00927879908826504
[26] M. Shi and J. Wang, \(A_\infty\)-algebras and three-dimensional Artin-Schelter regular algebras , J. Fudan Univ. Nat. Sci. 43 (2004), 371–378.
[27] E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation (in Russian), Funktsional. Anal. i Prilozhen. 16 , no. 4 (1982), 27–34.; English translation in Functional Anal. Appl. 16 (1982), 263–267. · Zbl 0513.58028 · doi:10.1007/BF01077848
[28] -, Some algebraic structures connected with the Yang-Baxter equation: Representations of a quantum algebra (in Russian), Funktsional. Anal. i Prilozhen. 17 , no. 4 (1983), 34–48.; English translation in Functional Anal. Appl. 17 (1983), 273–284.
[29] L. W. Small, J. T. Stafford, and R. B. Warfield Jr., Affine algebras of Gel’fand-Kirillov dimension one are PI , Math. Proc. Cambridge Philos. Soc. 97 (1985), 407–414. · Zbl 0561.16005 · doi:10.1017/S0305004100062976
[30] S. P. Smith, “Some finite-dimensional algebras related to elliptic curves” in Representation Theory of Algebras and Related Topics (Mexico City, 1994) , CMS Conf. Proc. 19 , Amer. Math. Soc., Providence, 1996, 315–348. · Zbl 0856.16009
[31] S. P. Smith and J. T. Stafford, Regularity of the four-dimensional Sklyanin algebra, Compositio Math. 83 (1992), 259–289. · Zbl 0758.16001
[32] J. T. Stafford, Regularity of algebras related to the Sklyanin algebra , Trans. Amer. Math. Soc. 341 (1994), 895–916. · Zbl 0823.17018 · doi:10.2307/2154589
[33] J. D. Stasheff, Homotopy associativity of \(H\)-spaces, I, Trans. Amer. Math. Soc. 108 (1963), 275–292.; II: 293–312. · Zbl 0114.39402 · doi:10.2307/1993608
[34] D. R. Stephenson, Artin-Schelter regular algebras of global dimension three , J. Algebra 183 (1996), 55–73. · Zbl 0868.16027 · doi:10.1006/jabr.1996.0207
[35] -, Algebras associated to elliptic curves , Trans. Amer. Math. Soc. 349 (1997), 2317–2340. JSTOR: · Zbl 0868.16028 · doi:10.1090/S0002-9947-97-01769-8
[36] -, Quantum planes of weight \((1,1,n)\) , J. Algebra 225 (2000), 70–92. · Zbl 0952.16044 · doi:10.1006/jabr.1999.8093
[37] D. R. Stephenson and M. Vancliff, Some finite quantum \(\mathbb P^3\)s that are infinite modules over their centers , J. Algebra 297 (2006), 208–215. · Zbl 1101.16021 · doi:10.1016/j.jalgebra.2005.04.005
[38] D. R. Stephenson and J. J. Zhang, Growth of graded Noetherian rings , Proc. Amer. Math. Soc. 125 (1997), 1593–1605. JSTOR: · Zbl 0879.16011 · doi:10.1090/S0002-9939-97-03752-0
[39] M. Vancliff, Quadratic algebras associated with the union of a quadric and a line in \(\mathbb P^3\) , J. Algebra 165 (1994), 63–90. · Zbl 0837.16023 · doi:10.1006/jabr.1994.1098
[40] -, The defining relations of quantum n\(\,\times\,\)n matrices , J. London Math. Soc. (2) 52 (1995), 255–262. · Zbl 0837.16024 · doi:10.1112/jlms/52.2.255
[41] M. Vancliff and K. Van Rompay, Embedding a quantum nonsingular quadric in a quantum \(\mathbb P^3\), J. Algebra 195 (1997), 93–129. · Zbl 0910.16013 · doi:10.1006/jabr.1997.7077
[42] -, Four-dimensional regular algebras with point scheme a nonsingular quadric in \(\mathbb P^3\) , Comm. Alg. 28 (2000), 2211–2242. · Zbl 0961.16019 · doi:10.1080/00927870008826955
[43] M. Vancliff, K. Van Rompay, and L. Willaert, Some quantum \(\mathbb P^3\)s with finitely many points , Comm. Algebra 26 (1998), 1193–1208. · Zbl 0915.16035 · doi:10.1080/00927879808826193
[44] M. Van Den Bergh, private notes , 1988.
[45] Waterloo Maple Inc., Maple\(^\mathrm TM\) is a trademark of Waterloo Maple Inc.
[46] J. Zhang, \(4\)-D Artin-Schelter regular algebras with a reflexive automorphism , in preparation.
[47] J. J. Zhang, Twisted graded algebras and equivalences of graded categories , Proc. London Math. Soc. (3) 72 (1996), 281–311. · Zbl 0852.16005 · doi:10.1112/plms/s3-72.2.281
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.