×

\(q\)-deformed quantum Lie algebras. (English) Zbl 1101.58007

Summary: Attention is focused on \(q\)-deformed quantum algebras with physical importance, i.e., \(U_q,(\text{su}_2), U_q(\text{so}_4)\) and \(q\)-deformed Lorentz algebra. The main concern of this article is to assemble important ideas about these symmetry algebras in a consistent framework which will serve as starting point for representation theoretic investigations in physics, especially quantum field theory. In each case considerations start from a realization of symmetry generators within the differential algebra. Formulae for coproducts and antipodes on symmetry generators are listed. The action of symmetry generators in terms of their Hopf structure is taken as the \(q\)-analog of classical commutators and written out explicitly. Spinor and vector representations of symmetry generators are calculated. A review of the commutation relations between symmetry generators and components of a spinor or vector operator is given. Relations for the corresponding quantum Lie algebras are computed. Their Casimir operators are written down in a form similar to that for the undeformed case.

MSC:

58B32 Geometry of quantum groups
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations
20G42 Quantum groups (quantized function algebras) and their representations

Software:

Mathematica

References:

[1] Bauer, C.; Wachter, H., Operator representations on quantum spaces, Eur. Phys. J. C, 31, 261-275 (2003) · Zbl 1032.81523
[2] Biedenharn, L. C.; Lohe, M. A., Quantum Group Symmetry and \(q\)-Tensor algebras (1995), World Scientific: World Scientific Singapore · Zbl 0842.17011
[3] Biedenharn, L. C.; Tartini, M., On \(q\)-tensor operators for quantum groups, Lett. Math. Phys., 20, 271-278 (1990) · Zbl 0708.17016
[4] C. Blohmann, Spin representations of the \(q\); C. Blohmann, Spin representations of the \(q\)
[5] Blohmann, C., Free \(q\)-deformed relativistic wave equations by representation theory, Eur. Phys. J. C, 30, 435-445 (2003) · Zbl 1099.81502
[6] Carow-Watamura, U.; Schlieker, M.; Scholl, M.; Watamura, S., Tensor representations of the quantum group \(S L_q(2)\) and quantum Minkowski space, Z. Phys. C, 48, 159-165 (1990)
[7] Carow-Watamura, U.; Schlieker, M.; Watamura, S., \(SO_q(N)\)-covariant differential calculus on quantum space and deformation of Schrödinger equation, Z. Phys. C, 49, 439-446 (1991) · Zbl 0736.17018
[8] Castellani, L., Differential calculus on \(ISO_q(N)\), Quantum Poincaré Algebra and \(q\)-gravity (preprint)
[9] Cerchiai, B. L.; Wess, J., \(q\)-deformed Minkowski space based on a \(q\)-Lorentz algebra, Eur. Phys. J. C, 5, 553-566 (1998) · Zbl 0925.81049
[10] Chaichian, M.; Demichev, A. P., Quantum Poincaré group without dilatation and twisted classical algebra, J. Math. Phys., 36, 398-413 (1995) · Zbl 0833.17010
[11] Chaichian, M.; Demichev, A. P., Introduction to Quantum Groups (1996), World Scientific: World Scientific Singapore · Zbl 0930.17009
[12] Chaichian, M.; Kulish, P. P.; Nishijima, K.; Tureanu, A., On a Lorentz-Invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B, 604, 98-102 (2004) · Zbl 1247.81518
[13] Dobrev, V. K., New \(q\)-Minkowski space-time and \(q\)-Maxwell equations hierarchy from \(q\)-conformal invariance, Phys. Lett. B, 341, 133-138 (1994) · Zbl 0925.81055
[14] Drinfeld, V. G., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl., 32, 254-258 (1985) · Zbl 0588.17015
[15] Drinfeld, V. G., Quantum groups, (Gleason, A. M., Proceedings of the International Congress of Mathematicians (1986), Amer. Math. Soc.), 798-820 · Zbl 0667.16003
[16] Fichtmüller, M.; Lorek, A.; Wess, J., \(q\)-deformed phase space and its lattice structure, Z. Phys. C, 71, 533-538 (1996)
[17] Fiore, G., Quantum groups \(SO_q(N), S p_q(N)\) have \(q\)-determinants, too, J. Phys. A, 27, 3795-3802 (1994) · Zbl 0842.17026
[18] Fiore, G., Realization of \(U_q(so_N)\) within the differential algebra on \(R_q(N)\), Comm. Math. Phys., 169, 475-500 (1995) · Zbl 0857.17010
[19] Grosse, H.; Klimčik, C.; Prešnajder, P., Towards finite quantum field theory in non-commutative geometry, Internat. J. Theoret. Phys., 35, 231-244 (1996) · Zbl 0846.58015
[20] Heisenberg, W., Über die in der Theorie der Elementarteilchen auftretende universelle Länge, Ann. Physics, 32, 20-33 (1938)
[21] Jimbo, M., A \(q\)-analogue of \(U(g)\) and the Yang-Baxter equation, Lett. Math. Phys., 10, 63-69 (1985) · Zbl 0587.17004
[22] Klimyk, A.; Schmüdgen, K., Quantum Groups and their Representations (1997), Springer Verlag: Springer Verlag Berlin · Zbl 0891.17010
[23] Koch, F.; Tsouchnika, E., Construction of \(\theta \)-Poincaré Algebras and their invariants on \(M_\theta \), Nuclear Phys. B, 717, 387-403 (2005) · Zbl 1207.81041
[24] Kulish, P. P.; Reshetikhin, N. Y., Quantum linear problem for the sine-Gordon equation and higher representations, J. Sov. Math., 23, 24-35 (1983)
[25] Lorek, A.; Schmidke, W. B.; Wess, J., \(SU_q(2)\)-covariant \(\hat{R} \)-Matrices for Reducible Representations, Lett. Math. Phys., 31, 279-288 (1994) · Zbl 0806.17018
[26] Lorek, A.; Weich, W.; Wess, J., Non-commutative Euclidean and Minkowski structures, Z. Phys. C, 76, 375-386 (1997)
[27] Lukierski, J.; Nowicki, A.; Ruegg, H., New quantum Poincare algebra and \(\kappa \)-deformed field theory, Phys. Lett. B, 293, 344-352 (1992) · Zbl 0834.17022
[28] Majid, S., On the \(q\)-regularisation, Internat. J. Modern Phys. A, 5, 4689-4696 (1990) · Zbl 0745.17022
[29] Majid, S., Examples of braided groups and braided matrices, J. Math. Phys., 32, 3246-3253 (1991) · Zbl 0821.16042
[30] Majid, S., Algebras and Hopf algebras in braided categories, Lec. Notes Pure Appl. Math., 158, 55-105 (1994) · Zbl 0812.18004
[31] Majid, S., Quantum and braided Lie algebras, J. Geom. Phys., 13, 307-356 (1994) · Zbl 0821.17007
[32] Majid, S., Foundations of Quantum Group Theory (1995), University Press: University Press Cambridge · Zbl 0857.17009
[33] Manin, Y. J., Quantum groups and Non-Commutative Geometry (1988), Centre de Recherche Mathematiques: Centre de Recherche Mathematiques Montreal · Zbl 0724.17006
[34] Mikulovic, D.; Schmidt, A.; Wachter, H., Grassmann variables on quantum spaces (preprint)
[35] Ocampo, H., \(SO_q(4)\) quantum mechanics, Z. Phys. C, 70, 525-530 (1996)
[36] Oeckl, R., Braided quantum field theory, Comm. Math. Phys., 217, 451-473 (2001) · Zbl 0994.81051
[37] Ogievetsky, O.; Schmidke, W. B.; Wess, J.; Zumino, B., \(q\)-deformed Poincaré algebra, Comm. Math. Phys., 150, 495-518 (1992) · Zbl 0849.17011
[38] Podles, P.; Woronowicz, S. L., Quantum deformation of Lorentz group, Comm. Math. Phys., 130, 381-431 (1990) · Zbl 0703.22018
[39] Reshetikhin, N. Yu.; Takhtadzhyan, L. A.; Faddeev, L. D., Quantization of Lie groups and Lie algebras, Leningrad Math. J., 1, 193-225 (1990) · Zbl 0715.17015
[40] Rohregger, M.; Wess, J., \(q\)-deformed Lorentz algebra in Minkowski phase space, Eur. Phys. J. C, 7, 177-183 (1999)
[41] Schlieker, M.; Scholl, W., Spinor calculus for quantum groups, Z. Phys. C, 47, 625-628 (1990)
[42] Schmidke, W. B.; Wess, J.; Zumino, B., A \(q\)-deformed Lorentz algebra in Minkowski phase space, Z. Phys. C, 52, 471-476 (1991) · Zbl 0793.17005
[43] Schmidt, A.; Wachter, H., Superanalysis on quantum spaces (preprint)
[44] Schupp, P.; Watts, P.; Zumino, B., Bicovariant quantum algebras and quantum Lie algebras, Comm. Math. Phys., 157, 305-329 (1993) · Zbl 0808.17010
[45] Snyder, H. S., Quantized space-time, Phys. Rev., 71, 38-41 (1947) · Zbl 0035.13101
[46] Song, X. C., Covariant differential calculus on quantum Minkowski space and \(q\)-analog of Dirac equation, Z. Phys. C, 55, 417-422 (1992)
[47] Sudbery, A., Quantum differential calculus and Lie algebras, Internat. J. Modern Phys., A, 228-231 (1993)
[48] Wachter, H.; Wohlgenannt, M., ∗-Products on quantum spaces, Eur. Phys. J. C, 23, 761-767 (2002)
[49] Wachter, H., \(q\)-Integration on quantum spaces, Eur. Phys. J. C, 32, 281-297 (2004) · Zbl 1065.81079
[50] Wachter, H., \(q\)-Exponentials on quantum spaces, Eur. Phys. J. C, 37, 379-389 (2004) · Zbl 1191.81140
[51] Wachter, H., \(q\)-Translations on quantum spaces (preprint) · Zbl 1191.81140
[52] Wess, J.; Zumino, B., Covariant differential calculus on the quantum hyperplane, Nucl. Phys. B. Suppl., 18, 302-312 (1991) · Zbl 0957.46514
[53] Wolfram, S., The Mathematica Book (1999), University Press: University Press Cambridge · Zbl 0924.65002
[54] Woronowicz, S. L., Compact matrix pseudo groups, Comm. Math. Phys., 111, 613-665 (1987) · Zbl 0627.58034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.