×

Isomorphisms modulo the compact operators of nest algebras. II. (English) Zbl 0668.47034

Le \({\mathcal K}\) denote the set of compact operators on a separable Hilbert space \({\mathcal H}\), let \({\mathcal T}({\mathcal N})\) denote the nest algebra associated with a nest \({\mathcal N}\) of subspaces of \({\mathcal H}\), and let \({\mathcal A}({\mathcal N})=({\mathcal T}({\mathcal N})+{\mathcal K})/{\mathcal K}\). The aim of this paper is to give a precise description of an arbitrary isomorphism \(\alpha\) of \({\mathcal A}({\mathcal N})\) onto another such algebra \({\mathcal A}({\mathcal M})\). In an earlier paper [part I, Pac. J. Math. 122, 263-286 (1986; Zbl 0625.47037)], the first author and F. Gilfeather considered the situation when both \({\mathcal N}\) and \({\mathcal M}\) consist of increasing sequences of finite-rank projections converging to the identity. The present paper relies heavily on this special case.
The precise form of \(\alpha\) in the general case is somewhat technical; in outline, there is a unitary element \(u\) of the Calkin algebra and an automorphism \(\alpha_ 0\) of \({\mathcal A}({\mathcal N})\) such that \(\alpha =Ad u\circ \alpha_ 0\). The element \(u\) may be taken to be the image in the Calkin algebra of a small compact perturbation of a partial isometry having a special relationship with \({\mathcal N}\) and \({\mathcal M}\), whilst \(\alpha_ 0\) preserves the nest \({\mathcal N}\) in a special way. As the authors themselves say, the paper is long and technically difficult. In order to help the reader, they give an overview of the proof in an introductory section.
Reviewer: T.A.Gillespie

MSC:

47L30 Abstract operator algebras on Hilbert spaces
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
47A15 Invariant subspaces of linear operators

Citations:

Zbl 0625.47037
Full Text: DOI

References:

[1] N. T. Andersen, Compact perturbations of reflexive algebras , J. Funct. Anal. 38 (1980), no. 3, 366-400. · Zbl 0451.47050 · doi:10.1016/0022-1236(80)90071-3
[2] C. Apostol, C. Foiaş, and D. Voiculescu, Some results on non-quasitriangular operators. VI , Rev. Roumaine Math. Pures Appl. 18 (1973), 1473-1494. · Zbl 0272.47002
[3] C. Apostol and F. Gilfeather, Isomorphisms modulo the compact operators of nest algebras , Pacific J. Math. 122 (1986), no. 2, 263-286. · Zbl 0625.47037 · doi:10.2140/pjm.1986.122.263
[4] William Arveson, Interpolation problems in nest algebras , J. Functional Analysis 20 (1975), no. 3, 208-233. · Zbl 0309.46053 · doi:10.1016/0022-1236(75)90041-5
[5] W. B. Arveson, Operator algebras and invariant subspaces , Ann. of Math. (2) 100 (1974), 433-532. JSTOR: · Zbl 0334.46070 · doi:10.2307/1970956
[6] E. Christensen and C. Peligrad, Commutants of nest algebras modulo the compact operators , Invent. Math. 56 (1980), no. 2, 113-116. · Zbl 0419.47017 · doi:10.1007/BF01392546
[7] K. R. Davidson, Commutative subspace lattices , Indiana Univ. Math. J. 27 (1978), no. 3, 479-490. · Zbl 0355.46050 · doi:10.1512/iumj.1978.27.27032
[8] K. R. Davidson, Compact perturbations of reflexive algebras , Canad. J. Math. 33 (1981), no. 3, 685-700. · Zbl 0426.47003 · doi:10.4153/CJM-1981-054-0
[9] K. R. Davidson, Quasitriangular algebras are “maximal” , J. Operator Theory 10 (1983), no. 1, 51-56. · Zbl 0526.47022
[10] K. R. Davidson, The essential commutant of CSL algebras , Indiana Univ. Math. J. 32 (1983), no. 5, 761-771. · Zbl 0498.47003 · doi:10.1512/iumj.1983.32.32050
[11] K. R. Davidson, Similarity and compact perturbations of nest algebras , J. Reine Angew. Math. 348 (1984), 72-87. · Zbl 0526.47023 · doi:10.1515/crll.1984.348.72
[12] K. R. Davidson, Approximate unitary equivalence of continuous nests , Proc. Amer. Math. Soc. 97 (1986), no. 4, 655-660. · Zbl 0599.47066 · doi:10.2307/2045923
[13] K. R. Davidson and B. H. Wagner, Automorphisms of quasitriangular algebras , J. Funct. Anal. 59 (1984), no. 3, 612-627. · Zbl 0549.47024 · doi:10.1016/0022-1236(84)90067-3
[14] K. R. Davidson and S. C. Power, Best approximation in \(C^ \ast\)-algebras , J. Reine Angew. Math. 368 (1986), 43-62. · Zbl 0579.46038
[15] J. A. Erdos, Unitary invariants for nests , Pacific J. Math. 23 (1967), 229-256. · Zbl 0156.36402 · doi:10.2140/pjm.1967.23.229
[16] T. Fall, W. Arveson, and P. Muhly, Perturbations of nest algebras , J. Operator Theory 1 (1979), no. 1, 137-150. · Zbl 0455.46051
[17] F. Gilfeather and D. R. Larson, Nest-subalgebras of von Neumann algebras: commutants modulo compacts and distance estimates , J. Operator Theory 7 (1982), no. 2, 279-302. · Zbl 0567.47039
[18] F. Gilfeather and D. R. Larson, Commutants modulo the compact operators of certain CSL algebras. II , Integral Equations Operator Theory 6 (1983), no. 3, 345-356. · Zbl 0532.47029 · doi:10.1007/BF01691902
[19] A. Hopenwasser and J. Plastiras, Isometries of quasitriangular operator algebras , Proc. Amer. Math. Soc. 65 (1977), no. 2, 242-244. · Zbl 0337.46054 · doi:10.2307/2041899
[20] B. E. Johnson and S. K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators , J. Functional Analysis 11 (1972), 39-61. · Zbl 0237.46070 · doi:10.1016/0022-1236(72)90078-X
[21] D. R. Larson, A solution to a problem of J. R. Ringrose , Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 243-246. · Zbl 0516.47024 · doi:10.1090/S0273-0979-1982-15022-4
[22] D. R. Larson, Nest algebras and similarity transformations , Ann. of Math. (2) 121 (1985), no. 3, 409-427. JSTOR: · Zbl 0606.47045 · doi:10.2307/1971180
[23] J. K. Plastiras, Quasitriangular operator algebras , Pacific J. Math. 64 (1976), no. 2, 543-549. · Zbl 0315.46060 · doi:10.2140/pjm.1976.64.543
[24] J. K. Plastiras, Compact perturbations of certain von Neumann algebras , Trans. Amer. Math. Soc. 234 (1977), no. 2, 561-577. JSTOR: · Zbl 0377.46053 · doi:10.2307/1997936
[25] C. E. Rickart, General theory of Banach algebras , The University Series in Higher Mathematics, D. van Nostrand Co., Inc., Princeton, New Jersey-Toronto-London-New York, 1960. · Zbl 0095.09702
[26] J. R. Ringrose, On some algebras of operators , Proc. London Math. Soc. (3) 15 (1965), 61-83. · Zbl 0135.16804 · doi:10.1112/plms/s3-15.1.61
[27] J. R. Ringrose, On some algebras of operators. II , Proc. London Math. Soc. (3) 16 (1966), 385-402. · Zbl 0156.14301 · doi:10.1112/plms/s3-16.1.385
[28] B. H. Wagner, Derivations of quasitriangular algebras , Pacific J. Math. 114 (1984), no. 1, 243-255. · Zbl 0587.47050 · doi:10.2140/pjm.1984.114.243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.