×

Approximate unitary equivalence of continuous nests. (English) Zbl 0599.47066

A short proof is given for the following theorem of N. T. Andersen [J. funct. Analysis 38, 366-400 (1980; Zbl 0451.47050)].
Theorem. Let \({\mathcal N}\) and \({\mathcal M}\) be two continuous nests of projections on a separable Hilbert space. Let \(\epsilon >0\) and let \(\theta\) be an order isomorphism of \({\mathcal N}\) onto \({\mathcal M}\). There is a unitary operator U such that \(\theta\) (N)U-UN is compact for all N in \({\mathcal N}\), and \(\sup \{\| \theta (N)U-UN\|:N\in {\mathcal N}\}<\epsilon\).

MSC:

47L30 Abstract operator algebras on Hilbert spaces
46L35 Classifications of \(C^*\)-algebras
46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)

Citations:

Zbl 0451.47050
Full Text: DOI

References:

[1] Niels Toft Andersen, Compact perturbations of reflexive algebras, J. Funct. Anal. 38 (1980), no. 3, 366 – 400. · Zbl 0451.47050 · doi:10.1016/0022-1236(80)90071-3
[2] William Arveson, Notes on extensions of \?^{*}-algebras, Duke Math. J. 44 (1977), no. 2, 329 – 355. · Zbl 0368.46052
[3] William Arveson, Perturbation theory for groups and lattices, J. Funct. Anal. 53 (1983), no. 1, 22 – 73. · Zbl 0543.47030 · doi:10.1016/0022-1236(83)90045-9
[4] Kenneth R. Davidson, Similarity and compact perturbations of nest algebras, J. Reine Angew. Math. 348 (1984), 72 – 87. · Zbl 0526.47023 · doi:10.1515/crll.1984.348.72
[5] Richard V. Kadison and I. M. Singer, Triangular operator algebras. Fundamentals and hyperreducible theory., Amer. J. Math. 82 (1960), 227 – 259. · Zbl 0096.31703 · doi:10.2307/2372733
[6] David R. Larson, A solution to a problem of J. R. Ringrose, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 243 – 246. · Zbl 0516.47024
[7] David R. Larson, Nest algebras and similarity transformations, Ann. of Math. (2) 121 (1985), no. 3, 409 – 427. · Zbl 0606.47045 · doi:10.2307/1971180
[8] Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97 – 113. · Zbl 0335.46039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.