×

On decomposing c-valued division rings. (English) Zbl 0702.16006

Let \({\mathcal D}\) be a finite-dimensional central division algebra over a field F. Suppose that v: \({\mathcal D}\to \Gamma\) is a Schilling valuation on \({\mathcal D}\) and \(\tau: {\mathcal D}\to {\mathcal D}\) is an involution. One says that v is a c-valuation (with respect to \(\tau\)) if for all \(a,a_ i,b\in {\mathcal D}^*\) (\({\mathcal D}^*\) is the group of nonzero elements of \({\mathcal D})\) \[ v(a^{\tau})=v(a),\quad v(\sum a_ ia^{\tau}_ i)=\min_ i\{v(aa^{\tau}_ i)\},\quad baa^{\tau}\equiv aa^{\tau}b\quad (mod(1+M)), \] where M is the ideal of the valuation v.
The main result of the paper under review is the following Theorem 1: Let \({\mathcal D}\) be any finite-dimensional c-valued division ring with \({\mathcal D}\neq F\) and suppose that
(H) given any \(a\in M\) there is a \(b\in F(a)\) such that \(1+a=b^ 2.\)
Then \({\mathcal D}\) decomposes into a tensor product of \(\tau\)-closed quaternion algebras over F. Observe that if F is Henselian and 2 doesn’t belong to M then any algebra \({\mathcal D}\) satisfies (H).
In the general case the authors prove Theorem 2. Every finite-dimensional c-valued ring has an immediate extension \({\mathcal D}_{\phi}\) which decomposes into a tensor product of \(\tau\)-closed quaternion division subrings. The second part of the paper is devoted to the consideration of the problem of constructing c-valued division algebras. Finally the authors show that not every c-valued division algebra is a tensor product of quaternion algebras.
Reviewer: V.Yanchevskij

MSC:

16K20 Finite-dimensional division rings
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
06F25 Ordered rings, algebras, modules
16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
Full Text: DOI

References:

[1] Bourbaki, N., Algèbre Commutative (1964), Hermann: Hermann Paris, Chap. 6, Valuations · Zbl 0205.34302
[2] Amitsur, S.; Rowen, L. H.; Tignol, J.-P, Division algebras of degree 4 and 8 with involution, Israel J. Math., 33, 133-148 (1979) · Zbl 0422.16010
[3] Chacron, M., \(c\)-orderable division rings with involution, J. Algebra, 75, 495-522 (1982) · Zbl 0482.16013
[4] Chacron, M., \(c\)-valuations and normal \(c\)-orderings, Canad. J. Math., 41, 14-67 (1989) · Zbl 0704.16010
[5] Draxl, P., Ostrowski’s theorem for Henselian valued skew fields, J. Reine Angew. Math., 354, 213-218 (1984) · Zbl 0536.12018
[6] Elman, R.; Lam, T.-Y; Tignol, J.-P; Wadsworth, A. R., Witt rings and Brauer groups under multiquadratic extensions, I, Amer. J. Math., 105, 1119-1170 (1983) · Zbl 0492.10014
[7] Endler, O., Valuation Theory (1972), Springer-Verlag: Springer-Verlag New York · Zbl 0257.12111
[8] Ershov, Yu. L., Valued division rings, (Fifth All Union Symposium, Theory of Rings, Algebras, and Modules (1982), Akad. Nauk SSSR Sibirsk. Otdel, Inst. Mat: Akad. Nauk SSSR Sibirsk. Otdel, Inst. Mat Novosibirsk), 53-55, (in Russian)
[9] Herstein, I. N., Rings with Involution, (Chicago Lectures in Math. (1976), Univ. of Chicago Press: Univ. of Chicago Press Chicago) · Zbl 0343.16011
[10] Jacob, B.; Wadsworth, A. R., A new construction of noncrossed product algebras, Trans. Amer. Math. Soc., 293, 693-721 (1986) · Zbl 0597.16016
[11] Jacob, B.; Wadsworth, A. R., Division algebras over Henselian fields, J. Algebra, 128, 126-179 (1990) · Zbl 0692.16011
[12] Morandi, P., The Henselization of a valued division algebra, J. Algebra, 122, 232-243 (1989) · Zbl 0676.16017
[13] Platonov, V. P.; Yanchevskiǐ, V. I., Soviet Math. Dokl., 36, 468-472 (1988), (English translation) · Zbl 0667.16018
[14] Platonov, V. P.; Yanchevskiǐ, V. I., Soviet Math. Dokl., 36, 502-506 (1988), (English translation) · Zbl 0669.16016
[15] Prestel, A., Lectures on Formally Real Fields, (Lecture Notes in Math., Vol. 1094 (1984), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0548.12010
[16] Ribenboim, P., Théorie des Valuations (1968), Presses Univ. Montréal: Presses Univ. Montréal Montréal
[17] Ribenboim, P., Equivalent forms of Hensel’s lemma, Exposition. Math., 3, 3-24 (1985) · Zbl 0558.12014
[18] Schilling, O. F.G, The Theory of Valuations, (Math. Surveys, Vol. 4 (1950), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0037.30702
[19] Tignol, J.-P, Produits croisés abéliens, J. Algebra, 70, 420-436 (1981) · Zbl 0473.16004
[20] Tignol, J.-P, Generalized crossed products, (Seminaire Mathématique (nouvelle série). Seminaire Mathématique (nouvelle série), Rapport No. 106 (1987), Université Catholique de Louvain: Université Catholique de Louvain Louvain-la-Neuve, Belgium) · Zbl 0558.16010
[21] Tignol, J.-P; Wadsworth, A. R., Totally ramified valuations on finite-dimensional division algebras, Trans. Amer. Math. Soc., 302, 223-249 (1987) · Zbl 0626.16005
[22] Wadsworth, A. R., Extending valuations to finite dimensional division algebras, (Proc. Amer. Math. Soc., 98 (1986)), 20-22 · Zbl 0601.12028
[23] Wedderburn, J. H.M, On division algebras, Trans. Amer. Math. Soc., 22, 129-135 (1921) · JFM 48.0126.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.