×

3D adaptive central schemes. I: Algorithms for assembling the dual mesh. (English) Zbl 1137.76041

Summary: Central schemes are frequently used for incompressible and compressible flow calculations. The present paper is the first in a forthcoming series where a new approach to a 2nd order accurate Finite Volume scheme operating on Cartesian grids is discussed. Here we start with an adaptively refined Cartesian primal grid in 3D and present a construction technique for the staggered dual grid based on \(L^{\infty}\)-Voronoi cells. The local refinement constellation on the primal grid leads to a finite number of uniquely defined local patterns on a primal cell. Assembling adjacent local patterns forms the dual grid. All local patterns can be analysed in advance. Later, running the numerical scheme on staggered grids, all necessary geometric information can instantly be retrieved from lookup-tables. The new scheme is compared to established ones in terms of algorithmic complexity and computational effort.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics

References:

[1] Arminjon, P.; St-Cyr, A., Nessyahu-Tadmor-type central finite volume methods without predictor for 3D Cartesian and unstructured tetrahedral grids, Appl. Numer. Math., 46, 135-155 (2003) · Zbl 1025.65048
[2] Arminjon, P.; St-Cyr, A.; Madrane, A., New two- and three-dimensional non-oscillatory central finite volume methods on staggered Cartesian grids, Appl. Numer. Math., 40, 367-390 (2002) · Zbl 0994.65092
[3] Arminjon, P.; Viallon, M. C.; Madrane, A., A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids, Internat. J. Comput. Fluid Dyn., 9, 1, 1-22 (1997) · Zbl 0913.76063
[4] Bell, J.; Berger, M.; Saltzman, J.; Welcome, M., Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Comput., 15, 1, 127-138 (1994) · Zbl 0793.65072
[5] Berger, M.; Helzel, C.; LeVeque, R., H-box methods for the approximation of hyperbolic conservation laws on irregular grids, SIAM J. Numer. Anal., 41, 3, 893-918 (2003) · Zbl 1066.65082
[6] Jiang, G.-S.; Tadmor, E., Nonoscillatory central schemes for multidimensionalhyperbolic conservation laws, SIAM J. Sci. Comput., 19, 6, 1892-1917 (1998) · Zbl 0914.65095
[7] Katsaounis, T.; Levy, D., A modified structured central scheme for 2D hyperbolic conservation laws, Appl. Math. Lett., 12, 6, 89-96 (1999) · Zbl 0941.65094
[8] Klin, M. Ch.; Pöschel, R.; Rosenbaum, K., Angewandte Algebra (1988), VEB Deutscher Verlag der Wissenschaften: VEB Deutscher Verlag der Wissenschaften Berlin · Zbl 0648.20001
[9] Lax, P. D., Weak solutions of non-linear hyperbolic equations and their numerical computations, Comm. Pure Appl. Math., 7, 159-193 (1954) · Zbl 0055.19404
[10] Levy, D.; Puppo, G.; Russo, G., A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws, SIAM J. Sci. Comput., 24, 2, 480-506 (2002) · Zbl 1014.65079
[11] Lie, K.-N.; Noelle, S., An improved quadrature rule for the flux-computation in staggered central difference schemes in multidimensions, J. Sci. Comput., 18, 1, 69-81 (2003) · Zbl 1024.76030
[12] Liu, X. D.; Tadmor, E., Third order nonoscillatory central scheme for hyperbolic conservation laws, Numer. Math., 79, 397-425 (1998) · Zbl 0906.65093
[13] Müller, S., Adaptive Multiscale Schemes for Conservation Laws, Lecture Notes in Comput. Sci. Engrg., vol. 27 (2002), Springer: Springer Berlin
[14] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing scheme for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068
[15] Noelle, S.; Rosenbaum, W.; Rumpf, M., An adaptive staggered grid scheme for conservation laws, Internat. Ser. Numer. Math., 141, 775-784 (2001)
[16] Noelle, S.; Rosenbaum, W.; Rumpf, M., Multidimensional adaptive staggered grids, (Warnecke, G., Analysis and Numerics for Conservation Laws (2005), Springer: Springer Berlin) · Zbl 1171.76425
[17] Ohlberger, M.; Rumpf, M., Hierarchical and adaptive visualization on nested grids, Computing, 59, 4, 269-285 (1997) · Zbl 0944.65022
[18] Pólya, G.; Read, R. C., Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (1987), Springer: Springer Berlin · Zbl 1536.05003
[19] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1997), Springer: Springer Berlin · Zbl 0888.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.