×

Piezomaterials for bone regeneration design – homogenization approach. (English) Zbl 1176.74125

Summary: Relying on the piezoelectric properties of natural bone we propose a new biomaterial made of an inert perforated piezoelectric matrix filled with living osteoblast cells. We expect that this device will help the process of bone regeneration. In this paper we give some conceptual and numerical tools based on homogenization theory as a starting point in the design of such a “smart system”.

MSC:

74L15 Biomechanical solid mechanics
74F15 Electromagnetic effects in solid mechanics
74Q05 Homogenization in equilibrium problems of solid mechanics
92C10 Biomechanics
Full Text: DOI

References:

[1] Anselme, K., Osteoblast adhesion on biomaterials (Review), Biomaterial, 21, 667-681 (2000)
[2] Baiotto, S., Zidi, M., 2004. Theoretical and numerical study of bone remodelling model: the effect of osteocyte cells distribution. Biomech. Model. Mechanobiol. 3, 6-16.; Baiotto, S., Zidi, M., 2004. Theoretical and numerical study of bone remodelling model: the effect of osteocyte cells distribution. Biomech. Model. Mechanobiol. 3, 6-16.
[3] Bassett, C. A.L.; Becker, R. O., Generation of electric potentials in bone in response to mechanical stress, Science, 137, 1063-1064 (1962)
[4] Benveniste, Y., Correspondence relations among equivalent classes of heterogeneous piezoelectric solids under anti-plane mechanical and in-plane electrical fields, J. Mech. Phys. Solids, 43, 553-571 (1995) · Zbl 0876.73057
[5] Breuls, R. G.M.; Sengers, B. G.; Oomens, C. W.J.; Bouten, C. V.C.; Baaijens, F. P.T., Predicting local cell deformation in engineered tissue constructs: a multilevel finite element approach, J. Biomech. Eng., 124, 198-207 (2002)
[6] Breuls, R. G.M.; Bouten, C. V.C.; Oomens, C. W.J.; Bader, D. L.; Baaijens, F. P.T., A theoretical analysis of damage evolution in skeletal muscle tissue with reference to pressure ulcer development, J. Biomech. Eng., 125, 902-909 (2003)
[7] Charras, G. T.; Lehenkari, P. P.; Horton, M. A., Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions, Ultramicroscopy, 86, 85-95 (2001)
[8] Cioranescu, D.; Saint Jean Paulin, J., Homogenisation of Reticulated Structures (1999), Springer: Springer Berlin · Zbl 0929.35002
[9] Cioranescu, D.; Damlamien, A.; Griso, G., Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Ser. I, 335, 99-104 (2002) · Zbl 1001.49016
[10] Cowin, S. C., Bone Mechanics Handbook (2001), CRC Press: CRC Press Boca Raton, FL
[11] Dieulesaint, E.; Royer, D., Ondes Élastiques dans les Solides (1974), Masson: Masson Paris
[12] Fukada, E.; Yasuda, I., On the piezoelectric effect of bone, J. Phys. Soc. Jpn., 12, 1158-1162 (1957)
[13] Griso, G., Miara, B., 2005. Periodically perforated piezoelectric structures. In: Advances in Smart Technologies in Structural Engineering, in press.; Griso, G., Miara, B., 2005. Periodically perforated piezoelectric structures. In: Advances in Smart Technologies in Structural Engineering, in press.
[14] Hornung, U., Homogenization and Porous Media (1997), Springer: Springer Berlin · Zbl 0872.35002
[15] Marino, A. A.; Becker, R. O., Piezoelectric effect and growth control in bone, Nature, 228, 473 (1970)
[16] Mechkour, H., 2004. Homogénéisation et simulation numérique de structures piézoélectriques perforées et laminées. Ph.D. Thesis, University of Marne-La-Vallée, Paris.; Mechkour, H., 2004. Homogénéisation et simulation numérique de structures piézoélectriques perforées et laminées. Ph.D. Thesis, University of Marne-La-Vallée, Paris.
[17] Mechkour, H., Miara, B., 2003. Modelling and control of piezoelectric perforated structures. Third World Conference on Structural Control, vol. 3. Wiley, New York, pp. 329-336.; Mechkour, H., Miara, B., 2003. Modelling and control of piezoelectric perforated structures. Third World Conference on Structural Control, vol. 3. Wiley, New York, pp. 329-336.
[18] Rahmoune, M., 1997. Analyse et simulation numérique de plaques piézoélectriques. Application au contrôle santé. Ph.D. Thesis of the University Pierre et Marie Curie, Paris 6.; Rahmoune, M., 1997. Analyse et simulation numérique de plaques piézoélectriques. Application au contrôle santé. Ph.D. Thesis of the University Pierre et Marie Curie, Paris 6.
[19] Rohan, E., 2002. Mathematical modelling of soft tissues. Habilitation Thesis, University of West Bohemia, Plzeň.; Rohan, E., 2002. Mathematical modelling of soft tissues. Habilitation Thesis, University of West Bohemia, Plzeň.
[20] Rohan, E., Sensitivity strategies in modelling heterogeneous media undergoing finite deformation, Math. Comput. Simul., 61, 261-270 (2003) · Zbl 1043.74038
[21] Rohan, E., 2005. Modelling large deformation induced microflow in soft biological tissues. J. Theor. Comput. Fluid Dyn., accepted for publication.; Rohan, E., 2005. Modelling large deformation induced microflow in soft biological tissues. J. Theor. Comput. Fluid Dyn., accepted for publication. · Zbl 1113.76090
[22] Sanchez-Palencia, E., 1980. Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin.; Sanchez-Palencia, E., 1980. Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin. · Zbl 0432.70002
[23] Searby, N.D., Globus, R.K., Steele, C.R., 2001. Structural modelling of an osteoblast subjected to hypergravity loading. BED Bioengineering Conference, vol. 50. ASME, New York, pp. 665-666.; Searby, N.D., Globus, R.K., Steele, C.R., 2001. Structural modelling of an osteoblast subjected to hypergravity loading. BED Bioengineering Conference, vol. 50. ASME, New York, pp. 665-666.
[24] Sikavitsas, V. I.; Temeno, J. S.; Mikos, G. A., Biomaterials and bone mechanotransduction (Review), Biomaterial, 22, 2581-2593 (2001)
[25] Telega, J. J.; Wojnar, R., Flow of electrolyte through porous piezoelectric medium: macroscopic equations, C. R. Acad. Sci. Paris, Ser. IIb, 328, 225-230 (2000) · Zbl 1003.76095
[26] Terada, K.; Ito, T.; Kikuchi, N., Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method, Comput. Methods Appl. Mech. Eng., 153, 223-257 (1998) · Zbl 0926.74097
[27] Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches, Int. J. Solids Struct., 37, 2285-2311 (2000) · Zbl 0991.74056
[28] Wiesmann, H. P.; Hartig, M.; Stratmann, U.; Meyer, U.; Joos, U., Electrical stimulation influences mineral formation of osteoblast-like cells in vitro, Biochim. Biophys. Acta, 1538, 28-37 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.