×

Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method. (English) Zbl 0926.74097

Summary: The mechanical behaviors of a solid-fluid mixture are characterized by using the homogenization method which is based on the method of asymptotic expansions. According to the choice of the so-called effective parameters, the formal derivation yields two distinct systems of well-known macromechanical governing equations; one for poroelasticity and the other for viscoelasticity. The homogenized equations representing the asymptotic behaviors entail the locally defined field equations and the geometry of a repeating unit. In addition to the identities of both formulations with ones in classical mechanics, the formulation enables the evaluation of actual mechanical responses of microstructures. This distinctive feature of the homogenization method is called the localization, which must be a key capability that provides a bridge between micromechanics and macromechanics. Thus, the present developments and several numerical simulations will provide insight into a variety of engineering problems in regard to solid-fluid coupled systems.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74A40 Random materials and composite materials
Full Text: DOI

References:

[1] von Terzaghi, K., Erdbaumechanic auf bodenphysikalischer grundlage, ((1925), Franz Deuticke: Franz Deuticke Leipzig), 399 · JFM 51.0655.07
[2] Fillunger, P., Erdbaumechanik?, ((1936), Selbstverlag des Verfassers: Selbstverlag des Verfassers Wein), 31
[3] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 154-164 (1941) · JFM 67.0837.01
[4] von Terzaghi, K., Theoretical Soil Mechanics (1966), John Wiley & Sons Inc
[5] Biot, M. A., Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 128-185 (1955) · Zbl 0067.23603
[6] Biot, M. A., Theory of deformation of a porous viscoelastic anisotropic solid, J. Appl. Phys., 27, 59-467 (1956)
[7] Biot, M. A., Mechanics of deformation and acoustic propagation porous media, J. Appl. Phys., 27, 1482-1498 (1962) · Zbl 0104.21401
[8] Maxwell, J. C., On the dynamics of theory of gasses, Phil. Trans. Roy. Soc. Lond. A, 157, 49-88 (1867)
[9] Truesdell, C.; Toupin, R. A., The classical field theories, (Flügge, S., Principles of Classical Mechanics and Field Theory. Principles of Classical Mechanics and Field Theory, Handbuch der Physic, Vol. III/1 (1960), Springer-Verlag: Springer-Verlag Berlin), 226-793
[10] Green, A. E.; Naghdi, P. M., Note on mixtures, Int. J. Engrg. Sci., 6, 631-635 (1968) · Zbl 0177.54704
[11] Green, A. E.; Naghdi, P. M., On basic equations for mixtures, Qrt. J. Mech. Appl. Math., XXII, 427-438 (1969) · Zbl 0183.54602
[12] Müller, I., A thermodynamic theory of mixture of fluids, Arch. Rat. Mech. Anal., 1-39 (1968) · Zbl 0157.56703
[13] Bowen, R. M., Theory of Mixtures, (Eringen, A. E., Continuum Physics, Vol. III (1976), Academic Press), 1-127 · Zbl 0181.53902
[14] Kyoya, T.; Ichikawa, Y.; Kawamoto, T., Stress and coupling analysis for discontinuity-distributed-rock, (1st Comput. Mech. Symposium (1987))
[15] Armstrong, G. C.; Lai, W. M.; Mow, V. C., An analysis of the unconfined compression of articular cartilage, J. Biomech. Engrg., 106, 165-173 (1984)
[16] Mow, V. C.; Kuei, S. C.; Lei, W. M.; Armstrong, C. G., Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiment, J. Biomech. Engrg., 102, 73-84 (1980)
[17] Spilker, R. L.; Sun, J. K., Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissues, Comput. Struct., 35, 4, 425-439 (1990) · Zbl 0727.73061
[18] de Boer, R.; Ehlers, W., A historical review of the formulation of porous media theories, Acta Mech., 74, 1-8 (1988)
[19] Hashin, Z., Analysis of composite materials—A survey, J. Appl. Mech., 50, 481-505 (1983) · Zbl 0542.73092
[20] Budiansky, B., On the elastic moduli of dome heteronomous materials, J. Mech. Phys. Solids, 13, 223-227 (1965)
[21] Hill, R., A self consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, 213-222 (1965)
[22] Hashin, Z.; Rosen, B. W., The elastic moduli of fiber-reinforced materials, J. Appl. Mech., 31, 223-232 (1964)
[23] Mori, T.; Tanaka, K., Average stress in matrix and average energy of materials with misfitting inclusions, Acta Metall., 21, 571-574 (1973)
[24] Halpin, J. C., Primer on Composite Materials Analysis (1992), Technomic Pub. Co
[25] Christensen, R. M., Mechanics of Composite Materials (1979), Wiley-Interscience: Wiley-Interscience New York
[26] Mura, T., Micromechanics of Defects in Solids (1982), Martinus Nijhoff Publ
[27] Chou, T.-W., Microstructural Design of Fiber Composites (1992), Cambridge Univ. Press
[28] Nemat-Nasser, S.; Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials (1993), North-Holland: North-Holland Amsterdam · Zbl 0924.73006
[29] Lions, J.-L., Asymptotics for branching transport process, (Glowinski, R.; Lions, J. L., Computing Methods in Applied Sciences and Engineering, Lecture Note in Mathematics, 704 (1979), Springer-Verlag), 317-329 · Zbl 0425.60073
[30] Lions, J.-L., Remarks on some asymptotic problems in composite materials and in perforated materials, (Nemat-Nasser, S., Variational Methods in Mechanics of Solids (1979), North Holland: North Holland Amsterdam), 3-19
[31] Lions, J.-L., Introductory remarks on asymptotic analysis of periodic structures, (Trends in Applications of Pure Mathematics Mechanics (1979), Pitman: Pitman Boston), 205-215 · Zbl 0424.35020
[32] Spagnolo, S., Convergence in energy for elliptic operators, (Hubbard, B., Numerical Solution of Partial Differential Equations—III, SYNSPADE (1975), Academic Press Int) · Zbl 0347.65034
[33] Benssousan, A.; Lions, J. L.; Papanicoulau, G., Asymptotic Analysis for Periodic Structures (1978), North-Holland: North-Holland Amsterdam · Zbl 0404.35001
[34] Duvaut, G.; Nuc, M., A new method of analysis of composite structure, (Ninth European Rotor Craft Forum. Ninth European Rotor Craft Forum, Paper No. 88 (1983)), Stresa, Italie
[35] Tartar, L., Compensated compactness and applications to partial differential equations, (Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (1979), Pitman), 136-212 · Zbl 0437.35004
[36] Tartar, L., Incompressible fluid flow in a porous medium—convergence of the homogenization process, in an appendix of on-homogeneous media and vibration theory, (Lecture Notes in Physics, 127 (1980), Springer-Verlag: Springer-Verlag Berlin), 368-377 · Zbl 0432.70002
[37] Sanchez-Palencia, E., Non homogeneous media and vibration theory, (Lecture Notes in Physics, 127 (1980), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0432.70002
[38] Babuska, I., Homogenization and its application, (Mathematical and Computational Problems. Numerical Solution of Partial Differential Equations, III (1976), Academic Press: Academic Press New York), 89-116 · Zbl 0346.65064
[39] Babuska, I., Homogenization approach in engineering, (Lions, J. L.; Glowinski, R., Computing Methods in Applied Sciences and Engineering. Computing Methods in Applied Sciences and Engineering, Lecture Note in Economics and Mathematical Systems, 134 (1976), Springer: Springer Berlin), 137-153
[40] Babuska, I., The computational aspects of the homogenization problem, (Lions, J. L.; Glowinski, R., Computing Methods in Applied Sciences and Engineering. Computing Methods in Applied Sciences and Engineering, Lecture Note in Mathematics, 704 (1979), Springer: Springer Berlin), 309-316 · Zbl 0396.65048
[41] Bakhvalov, N.; Panasenko, G., Homogenization: Averaging Processes in Periodic Media (1984), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0607.73009
[42] Keller, J. B., Darcy’s law for flow in porous media and the two phase method, (Sternberg, R. L.; Kalinowski, A. J.; Papadakis, J. S., Nonlinear Partial Differential Equations in Engineering and Applied Science (1980), M. Dekker: M. Dekker New York), 429-443, Office of Naval Research · Zbl 0439.76017
[43] Lévy, T.; Sanchez-Palencia, E., On boundary conditions for fluid flow in porous media, Int. J. Engrg. Sci., 13, 923-940 (1975) · Zbl 0321.76038
[44] Lévy, T.; Sanchez-Palencia, E., Equations and interface conditions for acoustic phenomena in porous media, J. Math. Anal. Applic., 61, 813-834 (1977) · Zbl 0392.76067
[45] Chang, W.; Kikuchi, N., Analyses of non-isothermal mold filled process in Resin Transfer Molding (RTM) and Structural Reaction Injection Modeling (SRIM), Comput. Mech., 16, 22-35 (1995)
[46] Hornung, U., Miscible displacement in porous media influenced by mobile and immobile water, Rocky Mountain J., 21, 2, 645-669 (1991) · Zbl 0751.76062
[47] Arbogast, T.; Douglas, J.; Hornung, U., Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21, 4, 823-836 (1990) · Zbl 0698.76106
[48] Lévy, T., Acoustic phenomena in elastic porous media, Mech. Res. Comm., 4, 253-257 (1977)
[49] Lévy, T., Propagation of waves in a fluid-saturated porous elastic solid, Int. J. Engrg. Sci., 17, 1005-1014 (1979) · Zbl 0409.76078
[50] Lévy, T., Fluid flow past an array of fixed particles, Int. J. Engrg. Sci., 21, 1, 11-23 (1983) · Zbl 0539.76092
[51] Lévy, T., Fluids in porous media and suspension, (Sanchez-Palencia, E.; Zaoui, A., Homogenization techniques for composite media. Homogenization techniques for composite media, Lecture Note on Physics, 272 (1987), Springer-Verlag: Springer-Verlag Berlin), 63-119 · Zbl 0645.76098
[52] Sanchez-Hubert, J., Asymptotic study of the macroscopic behaviour of a solid-liquid mixture, Math. Methods Appl. Sci., 2, 1-11 (1980) · Zbl 0427.73025
[53] Sanchez-Hubert, J.; Sanchez-Palencia, E., Acoustic fluid flow through holes and permeability of perforated walls, J. Math. Anal. Applic., 87, 2, 427-453 (1982) · Zbl 0484.76101
[54] Burridge, R.; Keller, J. B., Poroelasticity equations derived from microstructure, J. Acoust. Soc. Am., 70, 4, 1140-1146 (1981) · Zbl 0519.73038
[55] Batchelor, G. K., An Introduction to Fluid Dynamics (1967), Cambridge, Univ. Press · Zbl 0152.44402
[56] Malvern, L. E., Introduction to the Mechanics of a Continuous Medium (1969), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0181.53303
[57] Fung, Y. C., Foundations of Solid Mechanics (1965), Prentice Hall: Prentice Hall Englewood Cliffs, NJ
[58] Oleinik, O. A., Mathematical Problems in Elasticity and Homogenization (1992), North-Holland: North-Holland Amsterdam · Zbl 0768.73003
[59] Bear, J., Dynamics of Fluids in Porous Media (1967), Dover Publications, Inc
[60] Guedes, J. M.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Engrg., 83, 143-198 (1991) · Zbl 0737.73008
[61] Rajagopal, K. R.; Wineman, A. S., On boundary conditions for a certian class of problems in mixture theory, Int. J. Engrg. Sci., 24, 1453-1463 (1986) · Zbl 0594.73007
[62] Rajagopal, K. R.; Tao, L., Mechanics of Mixture (1995), World Scientific · Zbl 0941.74500
[63] (Desai, C. S.; Christian, J. T., Numerical Methods in Geotechnical Engineering (1977), McGraw-Hill) · Zbl 0411.00012
[64] Sandhu, R. S., Finite element analysis of coupled deformation and fluid flow in porous media, (Martins, J. B., Numerical Methods in Geomechanics, Proc. of the NATO Advanced Study Institute (1981), D. Reidel Pub. Com), 203-227 · Zbl 0562.76098
[65] K. Terada, N. Kikuchi and T. Miura, Digital image-based modeling applied to the homogenization analysis of composite materials, Comput. Mech., to appear.; K. Terada, N. Kikuchi and T. Miura, Digital image-based modeling applied to the homogenization analysis of composite materials, Comput. Mech., to appear. · Zbl 0898.73045
[66] Tschoegl, N. W., The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0681.73022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.