×

A note on effective N=1 super-Yang-Mills theories versus lattice results. (English) Zbl 1099.81521

Summary: We compare the glueball mass spectrum of an effective N=1 pure super Yang-Mills theory formulated in terms of a three-form supermultiplet with the available lattice data. These confirm the presence of four scalars and two Majorana fermions but the detailed mass spectrum is difficult to reconcile with the effective supersymmetric theory. By imposing supersymmetry and using two of four bosonic masses we get a prediction for the remaining masses as well as the mixing angles. We find that the mass of the three-form dominates over the contribution of the Veneziano-Yankielowicz-Dijkgraaf-Vafa term. As a byproduct we introduce a Fayet-Iliopoulos term for the three-form multiplet and show that it generates a glueball condensate.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] R. Dijkgraaf, C. Vafa, Nucl. Phys. B 644, 3 (2002) [hep-th/0206255] · Zbl 0999.81068 · doi:10.1016/S0550-3213(02)00766-6
[2] F. Cachazo, M.R. Douglas, N. Seiberg, E. Witten, JHEP 0212, 071 (2002) [hep-th/0211170] · doi:10.1088/1126-6708/2002/12/071
[3] F. Cachazo, N. Seiberg, E. Witten, JHEP 0302, 042 (2003) [hep-th/0301006] · doi:10.1088/1126-6708/2003/02/042
[4] G. Veneziano, S. Yankielowicz, Phys. Lett. B 113, 231 (1982) · doi:10.1016/0370-2693(82)90828-0
[5] G.R. Farrar, G. Gabadadze, M. Schwetz, Phys. Rev. D 58, 015009 (1998) [hep-th/9711166] · doi:10.1103/PhysRevD.58.015009
[6] P. Binetruy, F. Pillon, G. Girardi, R. Grimm, Nucl. Phys. B 477, 175 (1996) [hep-th/9603181] · Zbl 0925.81361 · doi:10.1016/0550-3213(96)00370-7
[7] I. Campos [DESY-Münster Collaboration], Eur. Phys. J. C 11, 507 (1999) [hep-lat/9903014] · doi:10.1007/s100529900183
[8] A. Donini, E. Gabrielli, M.B. Gavela, Nucl. Phys. B 546, 119 (1999) [hep-th/9810127] · Zbl 0944.81049 · doi:10.1016/S0550-3213(99)00030-9
[9] A. González-Arroyo, C. Pena, JHEP 9909, 007 (1999) [hep-th/9908026] · Zbl 0957.81013 · doi:10.1088/1126-6708/1999/09/007
[10] A. Feo, R. Kirchner, S. Luckmann, I. Montvay, G. Münster [DESY-Münster Collaboration], Nucl. Phys. Proc. Suppl. 83, 661 (2000) [hep-lat/9909070]
[11] For reviews see, for example, I. Montvay, Int. J. Mod. Phys. A 17, 2377 (2002) [hep-lat/0112007] · Zbl 1020.81047 · doi:10.1142/S0217751X0201090X
[12] J. Wess, J. Bagger, Supersymmetry and supergravity (Princeton University Press, 1992)
[13] E. Witten, Nucl. Phys. B 202, 253 (1982) · doi:10.1016/0550-3213(82)90071-2
[14] G.M. Shore, Nucl. Phys. B 222, 446 (1983) · doi:10.1016/0550-3213(83)90544-8
[15] A. Kovner, M.A. Shifman, Phys. Rev. D 56, 2396 (1997) [hep-th/9702174] · doi:10.1103/PhysRevD.56.2396
[16] F. Sannino, J. Schechter, Phys. Rev. D 57, 170 (1998) [hep-th/9708113] · doi:10.1103/PhysRevD.57.170
[17] S.J. Gates, Nucl. Phys. B 184, 381 (1981) · doi:10.1016/0550-3213(81)90225-X
[18] G.R. Dvali, M.A. Shifman, Phys. Lett. B 396, 64 (1997), Erratum B 407, 452 (1997) [hep-th/9612128] · doi:10.1016/S0370-2693(97)00131-7
[19] R. Bousso, J. Polchinski, JHEP 0006, 006 (2000) [hep-th/0004134] · Zbl 0990.83543 · doi:10.1088/1126-6708/2000/06/006
[20] G. Münster, private communication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.