×

Automorphic spectral identities and applications to automorphic \(L\)-functions on \(\mathrm{GL}_2\). (English) Zbl 1300.11051

Summary: We prove an automorphic spectral identity on \(\mathrm{GL}_2\) involving second moments. From it we obtain an asymptotic, with power-saving error term, for (non-archimedean) conductor-aspect integral moments, twisting by \(\mathrm{GL}_1\) characters ramifying at a fixed finite place. The strength of the spectral identity, and of the resulting asymptotics, is illustrated by extracting a subconvex bound in conductor aspect at a fixed finite prime.

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F70 Representation-theoretic methods; automorphic representations over local and global fields

References:

[1] Baier, S.; Zhao, Liangyi, A subconvexity bound for automorphic \(L\)-functions for \(SL(3, Z) (2010)\), available at
[2] Bernstein, J.; Reznikov, A., Periods, subconvexity of \(L\)-functions and representation theory, J. Differential Geom., 70, 1, 129-142 (2005) · Zbl 1097.11022
[3] Blomer, V.; Harcos, G., Twisted \(L\)-functions over number fields and Hilbertʼs eleventh problem, Geom. Funct. Anal., 20, 1-52 (2010) · Zbl 1221.11121
[4] Cogdell, J., On sums of three squares, J. Théor. Nombres Bordeaux, 15, 33-44 (2003) · Zbl 1050.11043
[5] Cogdell, J., Lectures on \(L\)-functions, converse theorems, and functoriality for \(GL_n\), (Lectures on Automorphic \(L\)-functions. Lectures on Automorphic \(L\)-functions, Fields Inst. Monogr., vol. 20 (2004), AMS: AMS Providence), (Fields Institute Notes) · Zbl 1066.11021
[6] J. Cogdell, I. Piatetski-Shapiro, P. Sarnak, Estimates on the critical line for Hilbert modular \(L\); J. Cogdell, I. Piatetski-Shapiro, P. Sarnak, Estimates on the critical line for Hilbert modular \(L\)
[7] Conrey, J. B.; Farmer, D. W.; Keating, J. P.; Rubinstein, M. O.; Snaith, N. C., Integral moments of \(L\)-functions, Proc. Lond. Math. Soc., 91, 33-104 (2005) · Zbl 1075.11058
[8] Conrey, J. B.; Ghosh, A., Mean values of the Riemann zeta-function, Mathematika, 31, 159-161 (1984) · Zbl 0528.10026
[9] Diaconu, A.; Garrett, P., Integral moments of automorphic \(L\)-functions, J. Inst. Math. Jussieu, 8, 2, 335-382 (2009) · Zbl 1268.11065
[10] Diaconu, A.; Garrett, P., Subconvexity bounds for automorphic \(L\)-functions, J. Inst. Math. Jussieu, 9, 1, 95-124 (2010) · Zbl 1275.11084
[11] Diaconu, A.; Goldfeld, D.; Hoffstein, J., Multiple Dirichlet series and moments of zeta and \(L\)-functions, Compos. Math., 139, 297-360 (2003) · Zbl 1053.11071
[12] A. Diaconu, D. Goldfeld, Second moments of \(\mathit{GL}_2L\); A. Diaconu, D. Goldfeld, Second moments of \(\mathit{GL}_2L\) · Zbl 1230.11058
[13] Diaconu, A.; Goldfeld, D., Second moments of Hecke-\(L\)-series and multiple Dirichlet series I, (Multiple Dirichlet Series, Automorphic Forms and Analytic Number Theory. Multiple Dirichlet Series, Automorphic Forms and Analytic Number Theory, Proc. Sympos. Pure Math., vol. 75 (2006), AMS: AMS Providence, RI), 59-89 · Zbl 1124.11051
[14] Duke, W.; Friedlander, J.; Iwaniec, H., Bounds for automorphic \(L\)-functions, Invent. Math., 112, 1-18 (1993) · Zbl 0765.11038
[15] Duke, W.; Friedlander, J.; Iwaniec, H., Bounds for automorphic \(L\)-functions, II, Invent. Math., 115, 219-239 (1994) · Zbl 0812.11032
[16] Duke, W.; Friedlander, J.; Iwaniec, H., Bounds for automorphic \(L\)-functions, III, Invent. Math., 143, 221-248 (2001) · Zbl 1163.11325
[17] Gelbart, S.; Shahidi, F., Boundedness of automorphic \(L\)-functions in vertical strips, J. Amer. Math. Soc., 14, 79-107 (2001) · Zbl 1050.11053
[18] Good, A., The square mean of Dirichlet series associated with cusp forms, Mathematika, 29, 278-295 (1982) · Zbl 0497.10016
[19] Good, A., The convolution method for Dirichlet series, (The Selberg Trace Formula and Related Topics. The Selberg Trace Formula and Related Topics, Brunswick, Maine, 1984. The Selberg Trace Formula and Related Topics. The Selberg Trace Formula and Related Topics, Brunswick, Maine, 1984, Contemp. Math., vol. 53 (1986), AMS: AMS Providence, RI), 207-214 · Zbl 0601.10020
[20] Ingham, A. E., Mean value theorems in the theory of the Riemann-zeta function, Proc. London Math. Soc., 27, 273-300 (1926) · JFM 53.0313.01
[21] Ivic, A., Lectures on Mean Values of the Riemann-zeta Function (1991), Tate Institute of Fundamental Research/Springer-Verlag: Tate Institute of Fundamental Research/Springer-Verlag Bombay/Berlin, Heidelberg, New York and Tokyo · Zbl 0758.11036
[22] Iwaniec, H.; Sarnak, P., Perspectives on the analytic theory of \(L\)-functions, Geom. Funct. Anal., 2000, 705-741 (2000) · Zbl 0996.11036
[23] Kim, H., On local \(L\)-functions and normalized intertwining operators, Canad. J. Math., 57, 535-597 (2005) · Zbl 1096.11019
[24] Kim, H.; Shahidi, F., Cuspidality of symmetric powers with applications, Duke Math. J., 112, 177-197 (2002) · Zbl 1074.11027
[25] Letang, D., Subconvexity bounds in depth-aspect for automorphic \(L\)-functions on \(GL(2) (2009)\), available at
[26] Li, X., Bounds for \(GL_3 \times GL_2L\)-functions and \(GL_3L\)-functions, Ann. of Math., 173, 1, 301-336 (2011) · Zbl 1320.11046
[27] Michel, P.; Venkatesh, A., The subconvexity problem for \(GL_2\), Publ. Math. IHES, 111, 1, 171-280 (2010) · Zbl 1376.11040
[28] Sarnak, Peter, Fourth moments of Grössencharakteren zeta functions, Comm. Pure Appl. Math., 38, 2, 167-178 (1985) · Zbl 0577.10026
[29] Selberg, A., On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., 8, 1-15 (1965) · Zbl 0142.33903
[30] Weil, A., Basic Number Theory (1974), Springer-Verlag: Springer-Verlag New York · Zbl 0326.12001
[31] Young, M., The second moment of \(GL(3) \times GL(2)L\)-functions, integrated, Adv. Math., 226, 4, 3550-3578 (2011) · Zbl 1231.11112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.