×

Epidemic as a natural process. (English) Zbl 1393.92048

Summary: Mathematical epidemiology is a well-recognized discipline to model infectious diseases. It also provides guidance for public health officials to limit outbreaks. Nevertheless, epidemics take societies by surprise every now and then, for example, when the Ebola virus epidemic raged seemingly unrestrained in Western Africa. We provide insight to this capricious character of nature by describing the epidemic as a natural process, i.e., a phenomenon governed by thermodynamics. Our account, based on statistical mechanics of open systems, clarifies that it is impossible to predict accurately epidemic courses because everything depends on everything else. Nonetheless, the thermodynamic theory yields a comprehensive and analytical view of the epidemic. The tenet subsumes various processes in a scale-free manner from the molecular to the societal levels. The holistic view accentuates overarching procedures in arresting and eradicating epidemics.

MSC:

92D30 Epidemiology
82B30 Statistical thermodynamics

References:

[1] Dixon, M. G.; Schafer, I. J., Morbidity and mortality weekly report, 548-551, (2014), Centers for Disease Control and Prevention (CDC), 63
[2] Galas, A., The evolution of ebola virus disease outbreaks, Folia Medica Cracoviensia, 54, 27-32, (2014)
[3] Gatherer, D., The 2014 ebola virus disease outbreak in west africa, J. Genet. Virol., 95, 1619-1624, (2014)
[4] Gire, S.; Goba, A.; Andersen, K.; Sealfon, R.; Park, D.; Kanneh, L., Genomic surveillance elucidates ebola virus origin and transmission during the 2014 outbreak, Science, 345, 1369-1372, (2014)
[5] Schoepp, R.; Rossi, C.; Khan, S.; Goba, A.; Fair, N., Undiagnosed acute viral febrile illnesses, sierra leone, Emerg. Infect. Dis., 20, 1176-1182, (2014)
[6] Baize, S.; Pannetier, D.; Oestereich, L.; Rieger, T.; Koivogui, L.; Magassouba, N., Emergence of zaire ebola virus disease in guinea, N. Eng. J. Med., 371, 1418-1425, (2014)
[7] Alexander, K.; Sanderson, C.; Marathe, M.; Lewis, B.; Rivers, C.; Shaman, J., What factors might have led to the emergence of ebola in west africa?, PLOS Negl. Trop. Dis., 9, (2015)
[8] Gomes, M.; Pastore y Piontti, A.; Rossi, L.; Chao, D.; Longini, I.; Halloran, M.; Vespignani, A., Assessing the international spreading risk associated with the 2014 west african ebola outbreak. version 1, PLoS Curr., 6, (2014), ecurrents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
[9] Agyepong, I. A., A systems view and lessons from the ongoing ebola virus disease (EVD) outbreak in west africa, Ghana Med. J., 48, 168-172, (2014)
[10] Farrar, J.; Piot, P., The ebola emergency-immediate action, ongoing strategy, N. Eng. J. Med., 371, 1545-1546, (2014)
[11] Lamunu, M.; Lutwama, J. J.; Kamugisha, J.; Opio, A.; Namboose, J.; Ndayimirije, N.; Okware, S., Containing a haemorrhagic fever epidemic: the ebola experience in uganda, Int. J. Infect. Dis., 8, 27-37, (2004), (October 2000-January 2001)
[12] Park, D.; Dudas, G.; Wohl, S.; Goba, A.; Whitmer, S.; Andersen, K., Ebola virus epidemiology, transmission, and evolution during seven months in sierra leone, Cell, 161, 1516-1526, (2015)
[13] Mäkelä, T.; Annila, A., Natural patterns of energy dispersal, Phys. Life Rev., 7, 477-498, (2010)
[14] Enanoria, W.; Worden, L.; Liu, F.; Gao, D.; Ackley, S.; Scott, J., Evaluating subcriticality during the ebola epidemic in west africa, PLoS One, 10, (2015), e0140651
[15] Chowell, G.; Nishiura, H., Transmission dynamics and control of ebola virus disease (EVD): a review, BMC Med., 12, 196, (2014)
[16] Li, K.; Small, M.; Zhang, H.; Fu, X., Epidemic outbreaks on networks with effective contacts, Nonlinear Anal. Real World Appl., 11, 101710-101725, (2010)
[17] Sharma, V.; Annila, A., Natural process - natural selection, Biophys. Chem., 127, 123-128, (2007)
[18] Nougairède, A.; Charrel, R.; Raoult, D., Models cannot predict future outbreaks: A/H1N1 virus, the paradigm, Eur. J. Epidemiol., 26, 183-186, (2011)
[19] Bailey, M., The mathematical theory of infectious diseases and its applications, (1975), Charles Griffin & Company LTD London · Zbl 0334.92024
[20] Diekmann, O.; Heesterbeek, J., Mathematical epidemiology of infectious diseases model building, Analysis and Interpretation, (2000), John Wiley & Son, LTD Chichester · Zbl 0997.92505
[21] Enanoria, W.; Worden, L.; Liu, F.; Gao, D.; Ackley, S.; Scott, J., Evaluating subcriticality during the ebola epidemic in west africa, PLoS One, 10, (2015), e0140651
[22] Keeling, M. J.; Danon, L., Mathematical modeling of infectious diseases, Br. Med. Bull., 92, 33-42, (2009)
[23] Rickles, D.; Hawe, P.; Shiell, A., A simple guide to chaos and complexity, J. Epidemiol. Community Health, 61, 933-937, (2007)
[24] Schuster, P., Ebola—challenge and revival of theoretical epidemiology. why extrapolations from early phases of epidemics are problematic, Complexity, 20, 7-12, (2015)
[25] Strogatz, S. H., Nonlinear dynamics and chaos with applications to physics, biology, Chemistry and Engineering, (2000), Westview Cambridge, MA
[26] Annila, A.; Salthe, S., Physical foundations of evolutionary theory, J. Non-Equilib. Thermodyn., 35, 301-321, (2010) · Zbl 1213.80003
[27] Hethcote, H., Qualitative analyses of communicable disease models, Math. Biosci., 28, 335-356, (1976) · Zbl 0326.92017
[28] Hethcote, H., The mathematics of infectious diseases, SIAM Rev., 42, 599-653, (2000) · Zbl 0993.92033
[29] Morens, D.; Folkers, G.; Fauci, A., The challenge of emerging and re-emerging infectious diseases, Nature, 430, 242-249, (2004)
[30] Pernu, T. K.; Annila, A., Natural emergence, Complexity, 17, 44-47, (2012)
[31] Nishiura, H., Prediction of pandemic influenza, Eur. J. Epidemiol., 26, 583-584, (2011)
[32] Rizzo, A.; Pedalino, B.; Porfiri, M., A network model for ebola spreading, J. Theor. Biol., 394, 212-222, (2016) · Zbl 1343.92517
[33] Furuse, Y.; Suzuki, A.; Kamigaku, T.; Oshitani, H., Evolution of the M gene of the influenza A virus in different host species: large-scale sequence analysis, Virol. J., 6, 67-80, (2009)
[34] Funk, S.; Salathé, M.; Jansen, V., Modeling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7, 1247-1256, (2010)
[35] von Neumann, J.; Morgenstern, O., Theory of games and economic behavior, (1944), Princeton University Press Princeton (NJ) · Zbl 0063.05930
[36] Nash, J., Equilibrium points in N-person games, PNAS, 36, 48-49, (1950) · Zbl 0036.01104
[37] Anttila, J.; Annila, A., Natural games, Phys. Lett. A, 375, 3755-3761, (2011) · Zbl 1254.82029
[38] Annila, A.; Salthe, S., Economies evolve by energy dispersal, Entropy, 11, 606-633, (2009)
[39] Grönholm, T.; Annila, A., Natural distribution, Math. Biosci., 210, 659-667, (2007) · Zbl 1131.62010
[40] Brunner, J.; Collins, J., Testing assumptions of the trade-off theory of the evolution of parasite virulence, Evol. Ecol. Res., 11, 1169-1188, (2009)
[41] Kubinak, J.; Potts, W., Host resistance influences patterns of experimental viral adaptation and virulence evolution, Virulence, 4, 410-418, (2013)
[42] Méthot, P.-O.; Alizon, S., What is a pathogen? toward a process view of host-parasite interactions, Virulence, 5, 775-785, (2014)
[43] Boldin, E.; Kisdi, É., Evolutionary suicide through a non-catastrophic bifurcation: adaptive dynamics of pathogens with frequency-dependent transmission, J. Math. Biol., 72, 1101-1124, (2016) · Zbl 1365.92073
[44] Würtz, P.; Annila, A., Ecological succession as an energy dispersal process, Biosystems, 100, 70-78, (2010)
[45] Würtz, P.; Annila, A., Roots of diversity relations, J. Biophys., (2008)
[46] Legrand, J.; Grais, R.; Boelle, P.; Valleron, A.; Flahault, A., Understanding the dynamics of ebola epidemics, Epidemiol. Infect., 135, 610-621, (2007)
[47] Li, K.; Small, M.; Zhang, H.; Fu, X., Epidemic outbreaks on networks with effective contacts, Nonlinear Anal. Real World Appl., 11, 101710-101725, (2010)
[48] Balcan, D.; Hu, H.; Goncalves, B.; Bajardi, P.; Poletto, C.; Ramasco, J., Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility, BMC Med., 4, 45-57, (2009)
[49] Lipstich, M.; Cohen, T.; Cooper, B.; Robins, J.; Ma, S.; James, L., Transmission dynamics and control of severe acute respiratory syndrome, Science, 300, 1966-1970, (2003)
[50] Isdory, A.; Mureithi, E.; Sumpter, D., The impact of human mobility on HIV transmission in kenya, PLoS One, 10, (2015)
[51] Perra, N.; Gonçalves, B.; Pastor-Satorras, R.; Vespignani, A., Activity driven modeling of time varying networks, Sci. Rep., 2, 496, (2012)
[52] Hartonen, T.; Annila, A., Natural networks as thermodynamic systems, Complexity, 18, 53-62, (2012)
[53] Herrmann-Pillath, C.; Salthe, S. N., Triadic conceptual structure of the maximum entropy approach to evolution, Biosystems, 103, 315-330, (2011)
[54] Ulanowicz, R. E., The balance between adaptability and adaptation, Biosystems, 64, 13-22, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.