×

A geometrical framework for amplitude recursions: bridging between trees and loops. (English) Zbl 1484.81093

Bluemlein, Johannes (ed.) et al., Anti-differentiation and the calculation of Feynman amplitudes. Selected papers based on the presentations at the conference, Zeuthen, Germany, October 2020. Cham: Springer. Texts Monogr. Symb. Comput., 125-144 (2021).
Summary: Various methods for the recursive evaluation of scattering amplitudes in quantum field theory and string theory have been put forward during the last couple of years. In these proceedings we describe a geometrical framework, which is believed to be capable of treating many of these recursions in a unified way. Our recursive framework is based on manipulating iterated integrals on Riemann surfaces with boundaries. A geometric parameter appears as variable of a differential equation of KZ or KZB type. The parameter interpolates between two associated regularized boundary values, which contain iterated integrals closely related to scattering amplitudes defined on two different geometries.
For the entire collection see [Zbl 1475.81004].

MSC:

81U05 \(2\)-body potential quantum scattering theory
81T10 Model quantum field theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
53Z05 Applications of differential geometry to physics
30F25 Ideal boundary theory for Riemann surfaces
32A40 Boundary behavior of holomorphic functions of several complex variables

References:

[1] N. Matthes, Elliptic multiple zeta values. Ph.D. thesis, Universität Hamburg, 2016 · Zbl 1444.81035
[2] V.G. Drinfeld, Algebra i Analiz 1(6), 114 (1989)
[3] V.G. Knizhnik, A.B. Zamolodchikov, Nucl. Phys. B 247, 83 (1984) · Zbl 0661.17020 · doi:10.1016/0550-3213(84)90374-2
[4] A.B. Goncharov, M. Spradlin, C. Vergu, A. Volovich, Phys. Rev. Lett. 105, 151605 (2010) · doi:10.1103/PhysRevLett.105.151605
[5] J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C. Raab, C. Radu, C. Schneider, J. Math. Phys. 59(6), 062305 (2018). · Zbl 1394.81164 · doi:10.1063/1.4986417
[6] J. Brödel, C. Duhr, F. Dulat, L. Tancredi, JHEP 05, 093 (2018) · doi:10.1007/JHEP05(2018)093
[7] A. Kotikov, Phys. Lett. B 254, 158 (1991) · doi:10.1016/0370-2693(91)90413-K
[8] E. Remiddi, Nuovo Cim. A 110, 1435 (1997)
[9] T. Gehrmann, E. Remiddi, Nucl. Phys. B 580, 485 (2000) · Zbl 1071.81089 · doi:10.1016/S0550-3213(00)00223-6
[10] J.M. Henn, Phys. Rev. Lett. 110, 251601 (2013) · doi:10.1103/PhysRevLett.110.251601
[11] G. Puhlfürst, S. Stieberger, Nucl. Phys. B 902, 186 (2016) · Zbl 1332.81188 · doi:10.1016/j.nuclphysb.2015.11.005
[12] G. Puhlfürst, S. Stieberger, Nucl. Phys. B 906, 168 (2016) · Zbl 1334.81045 · doi:10.1016/j.nuclphysb.2016.03.008
[13] A. Goncharov, Multiple Polylogarithms and Mixed Tate Motives. math/0103059[math.AG]
[14] D. Zagier, Ann. Math. 175(2), 977 (2012) · Zbl 1268.11121 · doi:10.4007/annals.2012.175.2.11
[15] C.R. Mafra, O. Schlotterer, S. Stieberger, Nucl. Phys. B 873, 419 (2013) · Zbl 1282.81151 · doi:10.1016/j.nuclphysb.2013.04.023
[16] C.R. Mafra, O. Schlotterer, S. Stieberger, Nucl. Phys. B 873, 461 (2013) · Zbl 1282.81152 · doi:10.1016/j.nuclphysb.2013.04.022
[17] J. Brödel, O. Schlotterer, S. Stieberger, Fortsch. Phys. 61, 812 (2013) · Zbl 1338.81316 · doi:10.1002/prop.201300019
[18] G. Veneziano, Nuovo Cim. A 57, 190 (1968) · doi:10.1007/BF02824451
[19] S. Mandelstam, Phys. Rept. 13, 259 (1974) · doi:10.1016/0370-1573(74)90034-9
[20] F. Brown, C. Dupont, Single-Valued Integration and Superstring Amplitudes in Genus Zero. arXiv:1910.01107[math.NT] · Zbl 1483.81117
[21] A. Selberg, Norsk Mat. Tidsskrift 26, 71 (1944) · Zbl 0063.06870
[22] K. Aomoto, J. Math. Soc. Japan 39(2), 191 (1987) · Zbl 0619.32010 · doi:10.2969/jmsj/03920191
[23] T. Terasoma, Compos. Math. 133, 1 (2002) · Zbl 1003.11042 · doi:10.1023/A:1016377828316
[24] V. Drinfeld, Leningrad Math. J. 2(4), 829 (1991) · Zbl 0728.16021
[25] T. Le, J. Murakami, Nagoya Math J. 142, 93 (1996) · Zbl 0862.43006
[26] S.J. Parke, T. Taylor, Phys. Rev. Lett. 56, 2459 (1986). · doi:10.1103/PhysRevLett.56.2459
[27] J. Brödel, O. Schlotterer, S. Stieberger, T. Terasoma, Phys. Rev. D 89(6), 066014 (2014) · doi:10.1103/PhysRevD.89.066014
[28] C.R. Mafra, O. Schlotterer, JHEP 01, 031 (2017) · Zbl 1373.83110 · doi:10.1007/JHEP01(2017)031
[29] A. Kaderli, J. Phys. A 53(41), 415401 (2020) · Zbl 1519.81422 · doi:10.1088/1751-8121/ab9462
[30] A. Levin, Compos. Math. 106, 267 (1997) · Zbl 0905.11028 · doi:10.1023/A:1000193320513
[31] F. Brown, A. Levin, Multiple Elliptic Polylogarithms. arXiv:1110.6917v2 [math.NT]
[32] A. Levin, G. Racinet, (2007). Towards Multiple Elliptic Polylogarithms. arXiv:math/0703237
[33] D. Mumford, M. Nori, P. Norman, Tata Lectures on Theta I, II. Bd. 2 (Birkhäuser, Basel, 1983, 1984) · Zbl 0744.14033
[34] P. Deligne, Le Groupe Fondamental de la Droite Projective Moins Trois Points, in Galois Groups Over, vol. 16, ed. by Y. Ihara, K. Ribet, J.P. Serre. Mathematical Sciences Research Institute Publications (Springer, New York, 1989), pp. 79-297 · Zbl 0742.14022
[35] F. Brown, Motivic periods and the projective line minus three points, in Proceedings of the ICM 2014, vol. 2, ed. by S.Y. Jang Y.R. Kim, D.-W. Lee, I. Yie (2014), pp. 295-318 · Zbl 1373.11064
[36] B. Enriquez, Bull. Soc. Math. France 144(3), 395 (2016) · Zbl 1407.11101 · doi:10.24033/bsmf.2718
[37] J. Brödel, C.R. Mafra, N. Matthes, O. Schlotterer, JHEP 07, 112 (2015) · Zbl 1388.83190 · doi:10.1007/JHEP07(2015)112
[38] J. Brödel, N. Matthes, O. Schlotterer, J. Phys. A 49(15), 155203 (2016) · Zbl 1354.81045 · doi:10.1088/1751-8113/49/15/155203
[39] J. Brödel, N. Matthes, O. Schlotterer, https://tools.aei.mpg.de/emzv
[40] J. Brödel, A. Kaderli, Amplitude Recursions with an Extra Marked Point. arXiv:1912.09927[hep-th]
[41] D. Bernard, Nucl. Phys. B 303, 77 (1988) · doi:10.1016/0550-3213(88)90217-9
[42] M.B. Green, J.H. Schwarz, L. Brink, Nucl. Phys. B 198, 474 (1982) · doi:10.1016/0550-3213(82)90336-4
[43] L. Dolan, P. Goddard, Commun. Math. Phys. 285, 219 (2009) · Zbl 1228.81181 · doi:10.1007/s00220-008-0542-1
[44] C.R. Mafra, O. Schlotterer, JHEP 03, 007 (2020) · Zbl 1435.83183 · doi:10.1007/JHEP03(2020)007
[45] A. Klemm, C. Nega, R. Safari, JHEP 04, 088 (2020) · doi:10.1007/JHEP04(2020)088
[46] K. Bönisch, F. Fischbach, A. Klemm, C. Nega, R. Safari, Analytic Structure of all Loop Banana Amplitudes. arXiv:2008.10574[hep · Zbl 1466.81022
[47] D. Bernard, Nucl. Phys. B 309, 145 (1988) · doi:10.1016/0550-3213(88)90236-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.