×

Overview on elliptic multiple zeta values. (English) Zbl 1444.81035

Burgos Gil, José Ignacio (ed.) et al., Periods in quantum field theory and arithmetic. Outcome of the “Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory”, ICMAT 2014, Madrid, Spain, September 15–19, 2014. Cham: Springer. Springer Proc. Math. Stat. 314, 105-132 (2020).
Summary: We give an overview of some work on elliptic multiple zeta values. First defined by Enriquez as the coefficients of the elliptic KZB associator, elliptic multiple zeta values are also special values of multiple elliptic polylogarithms in the sense of Brown and Levin. Common to both approaches to elliptic multiple zeta values is their representation as iterated integrals on a once-punctured elliptic curve. Having compared the two approaches, we survey various recent results about the algebraic structure of elliptic multiple zeta values, as well as indicating their relation to iterated integrals of Eisenstein series, and to a special algebra of derivations.
For the entire collection see [Zbl 1446.81002].

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
11M32 Multiple Dirichlet series and zeta functions and multizeta values
11G55 Polylogarithms and relations with \(K\)-theory
11G05 Elliptic curves over global fields
11M35 Hurwitz and Lerch zeta functions

References:

[1] Bannai, K., Kobayashi, S., Tsuji, T.: On the de Rham and p-adic realizations of the elliptic polylogarithm for CM elliptic curves. Ann. Sci. École. Norm. Sup. (4) 43(2), 185-234 (2010) · Zbl 1197.11073
[2] Baumard, S., Schneps, L.: On the derivation representation of the fundamental Lie algebra of mixed elliptic motives. Ann. Math. Qué. 41(1), 43-62 (2017) · Zbl 1396.11107 · doi:10.1007/s40316-015-0040-8
[3] Bloch, S.J.: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. CRM Monograph Series, vol. 11. American Mathematical Society, Providence, RI (2000) · Zbl 0958.19001
[4] Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393(3-4), 403-412 (1997) · Zbl 0946.81028 · doi:10.1016/S0370-2693(96)01623-1
[5] Broedel, J., Mafra, C.R., Matthes, N., Schlotterer, O.: Elliptic multiple zeta values and one-loop superstring amplitudes. J. High Energy Phys. 7, 112, front matter+41 pp 2015 · Zbl 1388.83190
[6] Broedel, J., Matthes, N., Schlotterer, O.: Relations between elliptic multiple zeta values and a special derivation algebra. J. Phys. A 49(15), 155203, 49 pp (2016) · Zbl 1354.81045
[7] Broedel, J., Schlotterer, O., Stieberger, S.: Polylogarithms, multiple zeta values and superstring amplitudes. Fortschr. Phys. 61(9), 812-870 (2013) · Zbl 1338.81316 · doi:10.1002/prop.201300019
[8] Broedel, J., Schlotterer, O., Stieberger, S., Terasoma, T.: All order \(\alpha^{\prime }\)-expansion of superstring trees from the Drinfeld associator. Phys. Rev. D 89(6), 066014 (2014) · doi:10.1103/PhysRevD.89.066014
[9] Brown, F.: Mixed Tate motives over \({\mathbb{Z}} \). Ann. of Math. (2) 175(2), 949-976 (2012) · Zbl 1278.19008
[10] Brown, F.: Iterated Integrals in Quantum Field Theory. Geometric and Topological Methods for Quantum Field Theory, pp. 188-240. Cambridge University Press, Cambridge (2013) · Zbl 1295.81072
[11] Brown, F.: Depth-graded motivic multiple zeta values. arXiv:1301.3053
[12] Brown, F.: Multiple modular values and the relative completion of the fundamental group of \({\mathscr{M}{}_{1,1}} \). arXiv:1407.5167v3
[13] Brown, F.: Zeta elements in depth \(3\) and the fundamental Lie algebra of the infinitesimal Tate curve. Forum Math. Sigma, 5:e1(56) (2017) · Zbl 1422.11180
[14] Brown, F.: Anatomy of an associator. arXiv:1709.02765
[15] Brown, F., Levin, A.: Multiple elliptic polylogarithms. arXiv:1110.6917
[16] Calaque, D., Enriquez, B., Etingof, P.: Universal KZB equations: the elliptic case. In: Yu. I. (ed.) Manin Algebra, arithmetic, and geometry: in honor of Vol. I, volume 269 of Progr. Math., pages 165-266. Birkhäuser Boston, Inc., Boston, MA (2009) · Zbl 1241.32011
[17] Chen, K.T.: Iterated path integrals. Bull. Amer. Math. Soc. 83(5), 831-879 (1977) · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[18] Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In Galois groups over \({\mathbb{Q}} \) (Berkeley, CA, 1987), volume 16 of Math. Sci. Res. Inst. Publ., pages 79-297. Springer, New York (1989) · Zbl 0742.14022
[19] Deligne, P., Goncharov, A. B.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. (4) 38(1), 1-56 (2005) · Zbl 1084.14024
[20] Drinfel’d, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({\rm Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\). Leningrad Math. J. 2(4), 829-860 (1991) · Zbl 0728.16021
[21] Enriquez, B.: Elliptic associators. Selecta Math. (N.S.) 20 (2014), no. 2, 491-584 · Zbl 1294.17012
[22] Enriquez, B.: Analogues elliptiques des nombres multizétas. Bull. Soc. Math. France 144(3), 395-427 (2016) · Zbl 1407.11101 · doi:10.24033/bsmf.2718
[23] Furusho, H.: Double shuffle relation for associators. Ann. Math. (2) 174(1), 341-360 (2011) · Zbl 1321.11088
[24] Gangl, H., Kaneko, M., Zagier, D.: Double zeta values and modular forms. In: Automorphic Forms and Zeta Functions, pp. 71-106. World Scientific Publishing, Hackensack, NJ (2006) · Zbl 1122.11057
[25] Goncharov, A.B.: Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5(4), 497-516 (1998) · Zbl 0961.11040 · doi:10.4310/MRL.1998.v5.n4.a7
[26] Goncharov, A.B., Manin, Y.I.: Multiple \(\zeta \)-motives and moduli spaces \(\mathscr{M}_{0, n} \). Compos. Math. 140(1), 1-14 (2004) · Zbl 1047.11063 · doi:10.1112/S0010437X03000125
[27] Hain, R.M.: The geometry of the mixed Hodge structure on the fundamental group. In: Algebraic geometry, Bowdoin, 1985 Brunswick, Maine, 1985, volume 46 of Proc. Sympos. Pure Math., pp. 247-282. Amer. Math. Soc., Providence, RI (1987) · Zbl 0654.14006 · doi:https://scholar.google.com/scholar?q=Hain%2C R.M.: The geometry of the mixed Hodge structure on the fundamental group. In: Algebraic geometry%2C Bowdoin%2C 1985 Brunswick%2C Maine%2C 1985%2C volume 46 of Proc. Sympos. Pure Math.%2C pp. 247%E2%80%93282. Amer. Math. Soc.%2C Providence%2C RI (1987)
[28] Hain, R., Matsumoto M.: Universal mixed elliptic motives. J. Inst. Math. Jussieu 1-104 (2018). https://doi.org/10.1017/S1474748018000130 · Zbl 1520.14045 · doi:10.1017/S1474748018000130
[29] Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions. Nuclear Phys. B 247(1), 83-103 (1984) · Zbl 0661.17020 · doi:10.1016/0550-3213(84)90374-2
[30] Le, T.T.Q., Murakami, J.: Kontsevich’s integral for the Kauffman polynomial. Nagoya Math. J. 142, 39-65 (1996) · Zbl 0866.57008 · doi:10.1017/S0027763000005638
[31] Levin, A.: Elliptic polylogarithms: an analytic theory. Compositio Math. 106(3), 267-282 (1997) · Zbl 0905.11028 · doi:10.1023/A:1000193320513
[32] Levin, A., Racinet, G.: Towards multiple elliptic polylogarithms. arXiv:math/0703237
[33] Lochak, P., Matthes, N., Schneps, L.: Elliptic multizetas and the elliptic double shuffle relations, arXiv:1703.09410
[34] Manin, Y. I.: Iterated integrals of modular forms and noncommutative modular symbols. In: Algebraic geometry and number theory, vol. 253 of Progr. Math., pages 565-597. Birkhäuser Boston, Boston, MA (2006) · Zbl 1184.11019
[35] Matthes, N.: Elliptic multiple zeta values. Ph.D. thesis, Universität Hamburg (2016) · Zbl 1354.81045
[36] Matthes, N.: Elliptic double zeta values. J. Number Theory 171, 227-251 (2017) · Zbl 1419.11108 · doi:10.1016/j.jnt.2016.07.010
[37] Pollack, A.: Relations between derivations arising from modular forms. Master’s thesis, Duke University (2009)
[38] Racinet, G.: Doubles mélanges des polylogarithmes multiples aux racines de l’unité. Publ. Math. Inst. Hautes Études Sci. 95, 185-231 (2002) · Zbl 1050.11066 · doi:10.1007/s102400200004
[39] Ree, R.: Lie elements and an algebra associated with shuffles. Ann. Math. 2(68), 210-2220 (1958) · Zbl 0083.25401 · doi:10.2307/1970243
[40] Schlotterer, O., Stieberger, S.: Motivic multiple zeta values and superstring amplitudes. J. Phys. A 46(47), 475401, 37 (2013) · Zbl 1280.81112
[41] Terasoma, T.: Geometry of multiple zeta values. In: International Congress of Mathematicians. Vol. II, pages 627-635. Eur. Math. Soc., Zürich (2006) · Zbl 1097.14009
[42] Weil, A.: Elliptic functions according to Eisenstein and Kronecker. Springer, Berlin-New York. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 88 (1976) · Zbl 0318.33004
[43] Zagier, D.: The Bloch-Wigner-Ramakrishnan polylogarithm function. Math. Ann. 286(1-3), 613-624 (1990) · Zbl 0698.33001 · doi:10.1007/BF01453591
[44] Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449-465 (1991) · Zbl 0742.11029 · doi:10.1007/BF01245085
[45] Zagier, D.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.