×

Modular representations in type \(A\) with a two-row nilpotent central character. (English) Zbl 07799759

Summary: We study the category of representations of \(\mathfrak{sl}_{m + 2n}\) over a field of characteristic \(p\) with \(p \gg 0\), whose \(p\)-character is a nilpotent whose Jordan type is the two-row partition \((m + n, n)\). In a previous paper with R. Anno [Zbl 1524.14037], we used Bezrukavnikov-Mirković-Rumynin’s theory [Zbl 1220.17009] of positive characteristic localization and exotic t-structures to give a geometric parametrization of the simples using annular crossingless matchings. Building on this, here we give combinatorial dimension formulae for the simple objects, and compute the Jordan-Hölder multiplicities of the simples inside the baby Vermas. We use Cautis-Kamnitzer’s geometric categorification [Zbl 1145.14016] of the tangle calculus to study the images of the simple objects under the BMR equivalence. Our results generalize Jantzen’s formulae in the subregular nilpotent case (i.e. when \(n = 1\)), and may be viewed as a positive characteristic analogue of the combinatorial description for Kazhdan-Lusztig polynomials of Grassmannian permutations due to Lascoux and Schutzenberger.

MSC:

17B50 Modular Lie (super)algebras
20C20 Modular representations and characters
20G05 Representation theory for linear algebraic groups
22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
14L30 Group actions on varieties or schemes (quotients)

References:

[1] Andersen, H.; Jantzen, J.; Soergel, W., Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: independence of p. Astérisque (1994) · Zbl 0802.17009
[2] Anno, R.; Nandakumar, V., Exotic t-structures for two-block Springer fibers. Trans. Am. Math. Soc., 3, 1523-1552 (2023) · Zbl 1524.14037
[3] Bernstein, J.; Frenkel, I.; Khovanov, M., A categorification of the Temperley-Lieb algebra and Schur quotients of \(U_q( \mathfrak{sl}_2)\) via projective and Zuckerman functors. Sel. Math. New Ser., 2, 199-241 (1999) · Zbl 0981.17001
[4] Bezrukavnikov, R.; Mirkovic, I.; Rumynin, D., Localization of modules for a semi-simple Lie algebra in prime characteristic. Ann. Math., 3, 945-991 (2008) · Zbl 1220.17009
[5] Bezrukavnikov, R.; Mirkovic, I., Representations of semisimple Lie algebras in prime characteristic and noncommutative Springer resolution, with an Appendix by E. Sommers. Ann. Math., 835-919 (2013) · Zbl 1293.17021
[6] Brundan, J.; Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra I: cellularity. Mosc. Math. J., 685-722 (2011) · Zbl 1275.17012
[7] Brundan, J.; Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra III: category \(O\). Represent. Theory, 170-243 (2011) · Zbl 1261.17006
[8] Cautis, S.; Kamnitzer, J., Knot homology via derived categories of coherent sheaves. I. The \(\mathfrak{sl}_2\)-case. Duke Math. J., 3, 511-588 (2008) · Zbl 1145.14016
[9] Goodwin, S.; Topley, L., Minimal dimensional representations of reduced enveloping algebras for \(\mathfrak{gl}_n\). Compos. Math., 8, 1594-1617 (2019) · Zbl 1447.17008
[10] Jantzen, J., Representations of Lie algebras in positive characteristic, representation theory of algebraic groups and quantum groups. Adv. Stud. Pure Math., 175-218 (2004) · Zbl 1104.17010
[11] Jantzen, J., Modular representations of reductive Lie algebras. J. Pure Appl. Algebra, 1-3, 133-185 (2000) · Zbl 0976.17004
[12] Humphreys, J., Modular representations of simple Lie algebras. Bull. Am. Math. Soc., 105-122 (1998) · Zbl 0962.17013
[13] Humphreys, J., Modular representations of classical Lie algebras and semisimple groups. J. Algebra, 51-79 (1971) · Zbl 0219.17003
[14] Lascoux, A.; Schutzenberger, M., Polynomes de Kazhdan-Lusztig pour les grassmaniennes. Astérisque, 249-266 (1981) · Zbl 0504.20007
[15] Mirkovic, I.; Vybornov, M., Quiver varieties and Beilinson-Drinfeld Grassmannians of type A · Zbl 1068.14056
[16] Nandakumar, V.; Zhao, G., Categorification via blocks of modular representations. Can. J. Math., 4, 1095-1123 (2021) · Zbl 1521.17037
[17] Premet, A., Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture. Invent. Math., 79-117 (1995) · Zbl 0828.17008
[18] Premet, A., Commutative quotients of finite W-algebras. Adv. Math., 269-306 (2010) · Zbl 1241.17015
[19] Reshetikhin, N.; Turaev, V., Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys., 1-26 (1990) · Zbl 0768.57003
[20] Spaltenstein, N., The fixed point set of a unipotent transformation on the flag manifold. Indag. Math., 5, 452-456 (1976) · Zbl 0343.20029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.