×

Categorification via blocks of modular representations for \(\mathfrak{sl}_n\). (English) Zbl 1521.17037

Summary: Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of \(\mathfrak{sl}_2\), where they use singular blocks of category \(\mathcal{O}\) for \(\mathfrak{sl}_n\) and translation functors. Here we construct a positive characteristic analogue using blocks of representations of \(\mathfrak{s}\mathfrak{l}_n\) over a field \(\mathbf{k}\) of characteristic \(p\) with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmannians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmannians. This is part of a larger project to give a combinatorial approach to Lusztig’s conjectures for representations of Lie algebras in positive characteristic.

MSC:

17B50 Modular Lie (super)algebras
22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
14M15 Grassmannians, Schubert varieties, flag manifolds
14L35 Classical groups (algebro-geometric aspects)

References:

[1] Anno, R. and Nandakumar, V., Exotic t-structures for two-block Springer fibers. Preprint, 2016. arXiv:1602.00768
[2] Ariki, S., On the decomposition numbers of the Hecke algebra of G(m, 1, n). J. Math. Kyoto Univ.36(1996), no. 4, 789-808. · Zbl 0888.20011
[3] Beilinson, A. A., Lusztig, G., and Macpherson, R., A geometric setting for the quantum deformation of GL_n. Duke Math. J.61(1990), no. 2, 655-677. · Zbl 0713.17012
[4] Bernstein, J., Frenkel, I., and Khovanov, M., A categorification of the Temperley-Lieb algebra and Schur quotients of \({U}_q\left({\mathfrak{sl}}_2\right)\) via projective and Zuckerman functors. Selecta Math.5(1999), no. 2, 199-241. · Zbl 0981.17001
[5] Bezrukavnikov, R. and Mirković, I., Representations of semisimple Lie algebras in prime characteristic and noncommutative Springer resolution with an Appendix by E. Sommers. Ann. Math.178(2013), 835-919. · Zbl 1293.17021
[6] Bezrukavnikov, R., Mirkovic, I., and Rumynin, D., Singular localization and intertwining functors for reductive lie algebras in prime characteristic. Nagoya J. Math.184(2006), 1-55. · Zbl 1125.17006
[7] Bezrukavnikov, R., Mirkovic, I., and Rumynin, D., Localization of modules for a semisimple Lie algebra in prime characteristic. Ann. Math.167(2008), no. 3, 945-991. · Zbl 1220.17009
[8] Bezrukavnikov, R. and Riche, S., Affine braid group actions on derived categories of Springer resolutions. Ann. Sci. Éc. Norm. Supér.45(2012), no. 4, 535-599. · Zbl 1293.20044
[9] Brundan, J., On the definition of Kac-Moody 2-category. Math. Ann.364(2016), 353-372. · Zbl 1395.17014
[10] Cautis, S., Dodd, C., and Kamnitzer, J., Associated graded of Hodge modules and categorical \({\mathfrak{sl}}_2\) actions. Preprint, 2016. arXiv:1603.07402 · Zbl 1464.32045
[11] Cautis, S. and Kamnitzer, J., Braiding via geometric Lie algebra actions. Compos. Math.148(2012), no. 2, 464-506. · Zbl 1249.14005
[12] Cautis, S. and Kamnitzer, J., Categorical geometric symmetric Howe duality. Preprint, 2016. arXiv:1611.02210 · Zbl 1423.14119
[13] Cautis, S., Kamnitzer, J., and Licata, A., Coherent sheaves and categorical \({\mathfrak{sl}}_2\) actions. Duke Math. J. 154(2010), no. 1, 135-179. · Zbl 1228.14011
[14] Cautis, S., Kamnitzer, J., and Licata, A., Derived equivalences for cotangent bundles of Grassmannians via categorical \({\mathfrak{sl}}_2\) actions. J. Reine Angew. Math.675(2013), 53-99. · Zbl 1282.14034
[15] Cautis, S., Kamnitzer, J., and Licata, A., Coherent sheaves on quiver varieties and categorification. Math. Ann.357(2013), no. 3, 805-854. · Zbl 1284.14016
[16] Cautis, S. and Koppensteiner, C., Exotic t-structures and actions of quantum affine algebras. Preprint, 2016. arXiv:1611.02777 · Zbl 1471.14038
[17] Cautis, S. and Lauda, A., Implicit structure in 2-representations of quantum groups. Select. Math.21(2015), 201-244. · Zbl 1370.17017
[18] Chriss, N. and Ginzburg, V., Representation theory and complex geometry. Birkhäuser, Boston, MA and Basel, Berlin, Germany, 1997. · Zbl 0879.22001
[19] Chuang, J. and Rouquier, R., Derived equivalences for symmetric groups and \({\mathfrak{sl}}_2\) -categorification. Ann. Math.167(2008), no. 1, 245-298. · Zbl 1144.20001
[20] Chuang, J. and Rouquier, R., Perverse equivalences. Preprint, 2017. www.math.ucla.edu/ rouquier/papers/perverse.pdf
[21] Elias, B. and Williamson, G., The Hodge theory of Soergel bimodules. Ann. Math.180(2014), 1089-1136. · Zbl 1326.20005
[22] Fiebig, P., Lusztig’s conjecture as a moment graph problem. Bull. Lond. Math. Soc.42(2010), 957-972. · Zbl 1234.20054
[23] Frenkel, I., Khovanov, M., and Stroppel, C., A categorification of finite-dimensional irreducible representations of quantum \(\mathfrak{sl}_2\) and their tensor products. Select. Math.12(2006), nos. 3-4, 379-431. · Zbl 1188.17011
[24] Frenkel, I. B., Khovanov, M. G., and Kirillov, A. A. Jr., Kazhdan-Lusztig polynomials and canonical basis. Transform. Groups3(1998), no. 4, 321-336. · Zbl 0918.17012
[25] Grojnowski, I., Affine \({\mathfrak{sl}}_p\) controls the representation theory of the symmetric group and related Hecke algebras. Preprint, 1999. arXiv:9907129
[26] Hartshorne, R., Algebraic geometry. Graduate Texts in Mathematics, 52, Springer-Verlag, New York, NY, and Heidelberg, Germany, 1977. · Zbl 0367.14001
[27] Humphreys, J. E., Projective modules for \(SL(2,q)\). J. Algebra25(1973), 513-518. · Zbl 0258.20010
[28] Humphreys, J. E., Modular representations of finite groups of Lie type. London Mathematical Society Lecture Note Series, 326, Cambridge University Press, Cambridge, UK, 2006. · Zbl 1113.20016
[29] Humphreys, J. E., Notes on Weyl modules for semisimple algebraic groups. Unpublished notes, 2014. http://people.math.umass.edu/jeh/pub/weyl.pdf
[30] Jantzen, J. C., Representations of Lie algebras in positive characteristic. Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., 131, Academic Press, Boston, MA, 1987. · Zbl 0654.20039
[31] Jantzen, J. C., Representations of algebraic groups. 2nd ed., Mathematical Surveys and Monographs, 107, American Mathematical Society, Providence, RI, 2003. · Zbl 1034.20041
[32] Jensen, L. T. and Williamson, G., The \(p\) -canonical basis for Hecke algebras. Preprint, 2015. arXiv:1510.01556 · Zbl 1390.20001
[33] Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups I. Representation theory. Am. Math. Soc.13(2009), no. 14, 309-347. · Zbl 1188.81117
[34] Khovanov, M. and Lauda, A., A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc.363(2011), no. 5, 2685-2700. · Zbl 1214.81113
[35] Lin, Z., Representations of Chevalley groups arising from admissible lattices. Proc. AMS.114(1992), 651-660. · Zbl 0796.20033
[36] Nakano, D. K., Cohomology of algebraic groups, finite groups, and Lie algebras: Interactions and connections. In: Hu, N., Shu, B., and Wang, J.P. (eds.), Lie and representation theory, Surv. Modern Math. II, International Press, Boston, MA, 2012, 151-176. · Zbl 1320.20048
[37] Nandakumar, V. and Yang, D., Modular representations in type A with a two-row nilpotent p-character. Preprint, 2017. arXiv:1710.08754.
[38] Nandakumar, V. and Zhao, G., Categorification via blocks of modular representations II. Preprint, 2017. arXiv:2005.08248http://sites.google.com/view/vinothmn/
[39] Riche, S., Koszul duality and modular representations of semi-simple Lie algebras. Duke Math. J.154(2010), no. 1, 31-134. · Zbl 1264.17005
[40] Riche, S., Koszul duality and Frobenius structure for restricted enveloping algebras. Preprint, 2010. arXiv:1010.0495
[41] Riche, S. and Williamson, G., Tilting modules and the p-canonical basis. Ast risque, to appear. arXiv:1512.08296 · Zbl 1437.20001
[42] Rouquier, R., 2-Kac-Moody Lie algebras. Preprint, 2008. arXiv:0812.5023
[43] Sussan, J., Category \(\mathbf{\mathcal{O}}\) and \({\mathfrak{sl}}_k\) link invariants. Ph.D. thesis, Yale University, New Haven, 2007. arXiv:0701045
[44] Webster, B., Tensor product algebras, Grassmannians and Khovanov homology. Preprint, 2013. arXiv:1312.7357 · Zbl 1408.57017
[45] Webster, B., Knot invariants and higher representation theory. Mem. Am. Math. Soc.250(2017), no. 1191, 133. · Zbl 1446.57001
[46] Weyman, J. and Zhao, G., Noncommutative desingularization of orbit closures for some representations of \({GL}_n\) . Preprint, 2012. arXiv:1204.0488
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.