×

On the third squarefree Veronese subring. (English) Zbl 1512.13009

Let \(S \subseteq \mathbb{N}^n\) be a semigroup. Recall that \(S\) is called a homogeneous semigroup if S \(S=\cup_{i\geq 0}S_i\) is a disjoint union, where \(S_0 = \{0\}\), \(S_i + S_j \subseteq S_{i+j}\), for all \(i, j\) and \(S\) is generated by some elements \(\mathbf{s}_1, \ldots, \mathbf{s}_m\) of \(S_1\). The elements of \(S_i\) are called elements of degree \(i\). Let \(\mathbb{K}\) be a field and \(\mathbf{x}^{\alpha}=x_1^{\alpha_1} \cdots x_n^{\alpha_n}\) be a monomial in \(R=\mathbb{K}[x_1, \ldots, x_n]\) where \(\alpha=(\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n\). Let \(A = \mathbb{K}[S]\) be the \(\mathbb{K}\)-subalgebra of \(R\) generated by monomials \(\mathbf{x}^{\mathbf{s}_1}, \ldots, \mathbf{x}^{\mathbf{s}_m}\) in \(R\). It is clear that the semigroup ring \(\mathbb{K}[S]\) of a homogeneous semigroup \(S\) is a homogeneous \(\mathbb{K}\)-algebra with homogeneous components \(\mathbb{K}[S]_i=\mathbb{K}S_i\). Following [J. Herzog et al., Math. Scand. 86, No. 2, 161–178 (2000; Zbl 1061.13008)], an standard graded \(\mathbb{K}\)-algebra is called strongly Koszul if its graded maximal ideal \(\mathfrak{m}\) admits a minimal system of homogeneous generators \(u_1, \ldots, u_m\), such that for all subsequences \(u_{i_1}, \ldots, u_{i_r}\) of \(u_1, \ldots, u_m\), with \(1 \leq i_1 < i_2 < \cdots < i_r \leq m\) and for all \(j = 1, \ldots, r\) the colon ideal \((u_{i_1}, \ldots, u_{i_{j-1}}) \colon u_{i_j}\) is generated by a subset of \(\{u_1, \ldots, u_m\}\). Also a homogeneous semigroup \(S\) is called strongly Koszul if \(\mathbb{K}[S]\) is strongly Koszul. This property only depends on \(S\) but not on the field \(\mathbb{K}\). The intersection degree \(b(S)\) of a semigroup \(S\) is the maximum degree of the generators of the ideals \((u_i)\cap(u_j)\), where \(u_i\) and \(u_j\) are any two generators of the semigroup ring \(\mathbb{K}[S]\). It is known that \(S\) is strongly Koszul if and only if \(b(S)=2\) [J. Herzog et al., Math. Scand. 86, No. 2, 161–178 (2000; Zbl 1061.13008), Proposition 1.4].
Let \(n\) be a positive integer and \([n]=\{1, \ldots, n\}\). For a subset \(F \subseteq [n]\), let \(\mathbf{x}_F=\prod_{i \in F}x_i\) be squarefree monomial in \(R=\mathbb{K}[x_1, \ldots, x_n]\). For integers \(r \leq n\), let \(A^{(r,n)}=\mathbb{K}[\mathbf{x}_F \colon F \subseteq [n] \text{ and } |F|=r]\) be \(\mathbb{K}\)-subalgebra of \(R\) and let \(S(r,n)\) be a semigroup such that \(\mathbb{K}[S(r,n)]=A^{(r,n)}\). It is shown in [A. Aramova et al., Nagoya Math. J. 168, 65–84 (2002; Zbl 1041.16018)] that \[ b(S(2,n))=\begin{cases} 2, & \text{ if } n=2,3\\ 3, & \text{ if } n \geq 4 \end{cases} \] One of the main results of the paper under review is that: \[ b(S(3,n))=\begin{cases} 2, & \text{ if } n=3,4\\ 3, & \text{ if } n =5,6,7\\ 4, & \text{ if } n \geq 8 \end{cases} \] On the other hand, in the paper under review, the author consider the simplicial complex \(\Delta^{(r,n)}=\{ F \subseteq [n] \colon |F| \leq r\}\) and introduce a new property in \(\Delta^{(3,n)}\) for a pure \(2\)-dimensional subcomplex, that is called Triangle-Distance Condition (TDC). The main result is this matter is that:

Theorem. Let \( n\geq 5\) and \(\mathcal{F} = \{\Delta_i\}_{i\in I}\) be the family of all subcomplexes of \(\Delta^{(3,n)}\) such that each each \(\Delta_i\) is pure, connected, chordal and satisfies the TDC. Then, for each \(i\), there exists a facet \(F \in \Delta_i\) such that \(\Delta_i \setminus F \in \mathcal{F}\).

In the above theorem, the concept of chordality for higher dimensional hypergraphs comes from [B. Benedetti and D. Bolognini, J. Comb. Theory, Ser. A 180, Article ID 105430, 10 p. (2021; Zbl 1459.05355); M. Bigdeli et al., J. Comb. Theory, Ser. A 145, 129–149 (2017; Zbl 1355.05285); M. Bigdeli et al., J. Algebra 531, 102–124 (2019; Zbl 1420.13028)] and this theorem generalizes a result of T. Hibi et al. [“A Koszul filtration for the second squarefree Veronese subring”, Int. J. Algebra 9, No. 1, 7–14 (2015)] to simplicial complexes.

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
05E40 Combinatorial aspects of commutative algebra
Full Text: DOI

References:

[1] Adiprasito, KA, Toric chordality, J. Math. Pures Appl., 108, 783-807 (2017) · Zbl 1505.14106 · doi:10.1016/j.matpur.2017.05.017
[2] Adiprasito, KA; Benedetti, B.; Lutz, FH, Extremal examples of collapsible complexes and random discrete Morse theory, Discrete Comput. Geom., 57, 824-853 (2017) · Zbl 1365.05305 · doi:10.1007/s00454-017-9860-4
[3] Adiprasito, KA; Nevo, E.; Samper, JA, Higher chordality: from graphs to complexes, Proc. AMS, 144, 3317-3329 (2016) · Zbl 1336.05149 · doi:10.1090/proc/13002
[4] Aramova, A.; Herzog, J.; Hibi, T., Shellability of semigroup rings, Nagoya Math. J., 168, 65-84 (2002) · Zbl 1041.16018 · doi:10.1017/S0027763000008357
[5] Benedetti, B., Bolognini, D.: Non-ridge-chordal complexes whose clique complex has shellable Alexander dual. J. Comb. Theory Ser. A 180(1), 105430 (2021) · Zbl 1459.05355
[6] Bigdeli, M.; Yazdan Pour, AA; Zaare-Nahandi, R., Stability of Betti numbers under reduction processes: towards chordality of clutters, J. Comb. Theory Ser. A, 145, 129-149 (2017) · Zbl 1355.05285 · doi:10.1016/j.jcta.2016.06.001
[7] Bigdeli, M., Yazdan Pour, A.A., Zaare-Nahandi, R.: Decomposable clutters and a generalization of Simon’s conjecture. J. Algebra 531, 102-124 (2019) · Zbl 1420.13028
[8] Bruns, W.; Herzog, J., Cohen Macaulay Rings (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0788.13005
[9] Conca, A., Universally Koszul algebras, Math. Ann., 317, 329-346 (2000) · Zbl 0960.13003 · doi:10.1007/s002080000100
[10] Ene, V., Herzog, J., Hibi, T.: Linear flags and Koszul filtrations. Kyoto J. Math. 55(3), 517-530 (2015) · Zbl 1330.13011
[11] Failla, G.; Utano, R., Connected graphs arising from products of Veronese varieties, Algebra Colloq., 23, 2, 281-292 (2016) · Zbl 1337.13002 · doi:10.1142/S1005386716000304
[12] Herzog, J., Hibi, T.: Monomial Ideals. Texts in Mathematics, vol. 260. Springer, London (2010)
[13] Herzog, J.; Hibi, T.; Restuccia, G., Strongly Koszul algebras, Math. Scand., 86, 161-178 (2000) · Zbl 1061.13008 · doi:10.7146/math.scand.a-14287
[14] Herzog, J.; Hibi, T., Componentwise linear ideals, Nagoya Math. J., 153, 141-153 (1999) · Zbl 0930.13018 · doi:10.1017/S0027763000006930
[15] Herzog, J.; Restuccia, G., Regularity functions for homogeneous algebras, Ark. Math., 76, 100-108 (2001) · Zbl 1036.13012 · doi:10.1007/s000130050549
[16] Herzog, J.; Takayama, Y., Resolutions by mapping cones, Homol. Homotopy Appl., 4, 2, 277-294 (2002) · Zbl 1028.13008 · doi:10.4310/HHA.2002.v4.n2.a13
[17] Hibi, T.; Qureshi, AA; Shikama, A., A Koszul filtration for the second squarefree Veronese subring, Int. J. Algebra, 9, 1, 7-14 (2015) · doi:10.12988/ija.2015.410102
[18] Jahan, AS; Zheng, X., Ideals with linear quotients, J. Comb. Theory Ser. A, 117, 104-110 (2010) · Zbl 1230.13016 · doi:10.1016/j.jcta.2009.03.012
[19] Nishida, H.; Oshugi, H.; Hibi, T., Hilbert functions of squarefree Veronese subrings, Lect. Notes Pure Appl. Math., 217, 289-299 (2001) · Zbl 1096.13521
[20] Sturmfels, B., Gröbner Bases and Convex Polytopes (1995), Providence: American Mathematical Society, Providence · doi:10.1090/ulect/008
[21] Utano, R.: Mixed product ideals and simplicial complexes. 16th Conference on Applied Mathematics, Aplimat 2017,Proceedings, 1586-1591 (2017)
[22] Villarreal, R.: Monomial Algebras, vol. 238. Marcel Dekker, Inc., New York (2001) · Zbl 1002.13010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.