×

Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas. (English) Zbl 1385.34067

In this paper, the authors prove that the determinantal formulas and tau-functions associated with two different Painlevé 2 Lax pairs (i.e., the Jimbo-Miwa Lax pair and the Harnad-Tracy-Widom Lax pair) are identical to the correlation functions and symplectic invariants computed by the topological recursion on their corresponding spectral curves in the case of arbitrary nonzero monodromy parameters. They also show that the symplectic invariants of both Lax pairs coincide with the Euler characteristic of the moduli space of Riemann surfaces of genus \(g\) for some limit of the time parameter and, as a consequence, they have succeeded in computing the difference (which appears from constant terms) between the two sets of symplectic invariants explicitly. A key of the proof is to show that the Lax pairs satisfy the topological type property introduced in [M. Bergère et al., ibid. 16, No. 12, 2713–2782 (2015; Zbl 1343.37061)] and [M. Bergère and B. Eynard, “ Determinantal formulae and loop equations”, Preprint, arXiv:0901.3273]. To prove the topological type property the authors propose a new method based on the use of a compatible differential equation in time to bypass the traditional method of insertion operators.
The main results of the paper generalizes similar results of G. Borot and B. Eynard [“Tracy-Widom GUE law and symplectic invariants”, Preprint, arXiv:1011.1418; “The asymptotic expansion of Tracy-Widom GUE law and symplectic invariants”, Preprint, arXiv:1012.2752] obtained from random matrix theory in the special case of vanishing monodromies. This paper clarifies a relation between the integrable structure of the Painlevé 2 equation and the topological recursion.

MSC:

34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
34M56 Isomonodromic deformations for ordinary differential equations in the complex domain
34M25 Formal solutions and transform techniques for ordinary differential equations in the complex domain

Citations:

Zbl 1343.37061

References:

[1] Ambjorn, J., Chekhov, L.: The matrix model for dessins dinfants. Ann. Inst. Henri Poincaré D 1, 337-361 (2014) · Zbl 1304.81130 · doi:10.4171/AIHPD/10
[2] Bergère, M., Borot, G., Eynard, B.: Rational differential systems, loop equations, and application to the \[\text{q}^{\text{th}}\] qth reductions of KP. Ann. Henri Poincaré 16, 2713 (2015) · Zbl 1343.37061 · doi:10.1007/s00023-014-0391-8
[3] Bergère, M., Eynard, B.: Determinantal formulae and loop equations. arXiv:0901.3273 (2009) · Zbl 1107.81043
[4] Bergère, M., Eynard, B.: Universal scaling limits of matrix models, and \[(p,q)\](p,q) Liouville gravity. arXiv:0909.0854 (2009) · Zbl 1167.81023
[5] Bertola, M., Eynard, B., Harnad, J.: Partition functions for matrix models and isomonodromic tau functions. J. Phys. A 36, 3067-3083 (2003) · Zbl 1050.37032 · doi:10.1088/0305-4470/36/12/313
[6] Bertola, M., Marchal, O.: The partition function of the two-matrix model as an isomonodromic tau-function. J. Math. Phys. 50, 013529 (2009) · doi:10.1063/1.3054865
[7] Borot, G., Eynard, B.: Tracy-Widom GUE law and symplectic invariants. arXiv:1011.1418 (2010) · Zbl 1050.37032
[8] Borot, G., Eynard, B.: The asymptotic expansion of Tracy-Widom GUE law and symplectic invariants. arXiv:1012.2752 (2010) · Zbl 1194.34167
[9] Borot, G., Guionnet, A.: Asymptotic expansion of \[\beta\] β matrix models in the one-cut regime. Commun. Math. Phys. 317(2), 447-483 (2013) · Zbl 1344.60012 · doi:10.1007/s00220-012-1619-4
[10] Bouchard, V., Catuneanu, A., Marchal, O., Sułkowski, P.: The remodeling conjecture and the Faber-Pandharipande formula. Lett. Math. Phys. 103(1), 59-77 (2013) · Zbl 1282.14094 · doi:10.1007/s11005-012-0588-z
[11] Bouchard, V., Sułkowski, P.: Topological recursion and mirror curves. Adv. Theor. Math. Phys. 16, 1443-1483 (2012) · Zbl 1276.14054 · doi:10.4310/ATMP.2012.v16.n5.a3
[12] Chekhov, L., Eynard, B., Orantin, N.: Free energy topological expansion for the 2-matrix model. JHEP 12, 053 (2006) · Zbl 1226.81250 · doi:10.1088/1126-6708/2006/12/053
[13] Dumitrescu, O., Mulase, M.: Lectures on the topological recursion for Higgs bundles and quantum curves. arXiv:1509.09007 (2015) · Zbl 1401.14001
[14] Dumitrescu, O., Mulase, M., Safnuk, B., Sorkin, A.: The spectral curve of the Eynard-Orantin recursion via the Laplace transform. Contemp. Math. 593, 263-315 (2013) · Zbl 1293.14007 · doi:10.1090/conm/593/11867
[15] Eynard, B.: Intersection numbers of spectral curves. arXiv:1104.0176 (2011) · Zbl 1223.37053
[16] Eynard, B.: Counting Surfaces. CRM Aisenstadt Chair lectures, Progress in Mathematical Physics, vol. 70. Springer (2016) · Zbl 1338.81005
[17] Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1, 347-452 (2007) · Zbl 1161.14026 · doi:10.4310/CNTP.2007.v1.n2.a4
[18] Eynard, B., Orantin, N.: About the \[x\] x-\[y\] y symmetry of the \[F_g\] Fg algebraic invariants. arXiv:1311.4993 (2013) · Zbl 1134.81040
[19] Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85, 457-485 (1986) · Zbl 0616.14017 · doi:10.1007/BF01390325
[20] Harnad, J., Tracy, C. A., Widom, H.: Hamiltonian structure of equations appearing in random matrices. In: Osborn, H. (ed.) Low-Dimensional Topology and Quantum Field Theory, NATO ASI Series B, vol. 314, pp. 231-245. Plenum Press, New York (1993) · Zbl 0938.82510
[21] Iwaki, K., Marchal, O., Saenz, A.: Painlevé equations, topological type property and reconstruction by the topological recursion. arXiv:1601.02517 · Zbl 1391.34140
[22] Iwaki, K., Koike, T., Takei, Y.: In preparation
[23] Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. General theory and \[\tau\] τ-function. Physica 2D(2), 306-352 (1981) · Zbl 1194.34167
[24] Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II. Physica 2D(2), 407-448 (1981) · Zbl 1194.34166
[25] Joshi, N., Kitaev, A.V., Treharne, P.A.: On the linearization of the first and second Painlevé equations. J. Phys. A Math. Theor. 42, 055208 (2009) · Zbl 1162.34073 · doi:10.1088/1751-8113/42/5/055208
[26] Kawai, T., Takei, Y.: Algebraic Analysis of Singular Perturbation. Iwanami Series in Modern Mathematics, Translations of Mathematical Monographs, vol. 227 (2005) · Zbl 1100.34004
[27] Marchal, O., Cafasso, M.: Double-scaling limits of random matrices and minimal \[(2m,1)\](2m,1) models: the merging of two cuts in a degenerate case. J. Stat. Mech. 2011, P04013 (2011) · doi:10.1088/1742-5468/2011/04/P04013
[28] Marchal, O., Eynard, B., Bergère, M.: The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion. Random Matrices Theory Appl. 3, 1450013 (2014) · Zbl 1314.15027 · doi:10.1142/S2010326314500130
[29] Mari \[\tilde{\rm n}\] n o, M.: Les Houches lectures on matrix models and topological strings. arXiv:hep-th/0410165
[30] Mehta, M.L.: Random Matrices. Pure and Applied Mathematics, vol. 142, 3rd edn. Elsevier, Amsterdam (2004) · Zbl 1107.15019
[31] Mulase, M., Penkava, M.: Topological recursion for the Poincaré polynomial of the combinatorial moduli space of curves. Adv. Math. 230, 1322-1339 (2012) · Zbl 1253.14030 · doi:10.1016/j.aim.2012.03.027
[32] Penner, R.C.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27, 35-53 (1988) · Zbl 0608.30046 · doi:10.4310/jdg/1214441648
[33] Tracy, C., Widom, H.: Introduction to Random Matrices. Springer Lecture Notes in Physics, vol. 424, pp. 103-130 (1993) · Zbl 0791.15017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.