×

Towards a functorial description of quantum relative entropy. (English) Zbl 1485.94038

Nielsen, Frank (ed.) et al., Geometric science of information. 5th international conference, GSI 2021, Paris, France, July 21–23, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12829, 557-564 (2021).
Summary: A Bayesian functorial characterization of the classical relative entropy (KL divergence) of finite probabilities was recently obtained by J. C. Baez and T. Fritz [Theory Appl. Categ. 29, 422–456 (2014; Zbl 1321.94023)]. This was then generalized to standard Borel spaces by N. Gagné and P. Panangaden [Electron. Notes Theor. Comput. Sci. 336, 135–153 (2018; Zbl 1525.60011)]. Here, we provide preliminary calculations suggesting that the finite-dimensional quantum (Umegaki) relative entropy might be characterized in a similar way. Namely, we explicitly prove that it defines an affine functor in the special case where the relative entropy is finite. A recent non-commutative disintegration theorem provides a key ingredient in this proof.
For the entire collection see [Zbl 1482.94007].

MSC:

94A17 Measures of information, entropy
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
62B10 Statistical aspects of information-theoretic topics

References:

[1] Baez, JC; Fritz, T., A Bayesian characterization of relative entropy, Theory Appl. Categ., 29, 16, 422-457 (2014) · Zbl 1321.94023
[2] Baez, JC; Fritz, T.; Leinster, T., A characterization of entropy in terms of information loss, Entropy, 13, 11, 1945-1957 (2011) · Zbl 1301.94043 · doi:10.3390/e13111945
[3] Farenick, D.R.: Algebras of Linear Transformations. Universitext. Springer, New York (2001). doi:10.1007/978-1-4613-0097-7 · Zbl 0959.15001
[4] Furber, R., Jacobs, B.: From Kleisli categories to commutative \(C^*\)-algebras: probabilistic Gelfand duality. Log. Methods Comput. Sci. 11(2), 1:5, 28 (2015). doi:10.2168/LMCS-11(2:5)2015 · Zbl 1391.68034
[5] Gagné, N., Panangaden, P.: A categorical characterization of relative entropy on standard Borel spaces. In: The Thirty-third Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIII). Electronic Notes in Theoretical Computer Science, vol. 336, pp. 135-153. Elsevier Sci. B. V., Amsterdam (2018). doi:10.1016/j.entcs.2018.03.020 · Zbl 1525.60011
[6] Parzygnat, A.J.: Discrete probabilistic and algebraic dynamics: a stochastic Gelfand-Naimark theorem (2017). arXiv preprint: arXiv:1708.00091 [math.FA]
[7] Parzygnat, A.J.: A functorial characterization of von Neumann entropy (2020). arXiv preprint: arXiv:2009.07125 [quant-ph]
[8] Parzygnat, A.J.: Inverses, disintegrations, and Bayesian inversion in quantum Markov categories (2020). arXiv preprint: arXiv:2001.08375 [quant-ph]
[9] Parzygnat, A.J., Russo, B.P.: Non-commutative disintegrations: existence and uniqueness in finite dimensions (2019). arXiv preprint: arXiv:1907.09689 [quant-ph]
[10] Petz, D., Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Commun. Math. Phys., 105, 1, 123-131 (1986) · Zbl 0597.46067 · doi:10.1007/BF01212345
[11] Petz, D., Characterization of the relative entropy of states of matrix algebras, Acta Math. Hung., 59, 3-4, 449-455 (1992) · Zbl 0765.46045 · doi:10.1007/BF00050907
[12] Umegaki, H.: Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math. Sem. Rep. 14(2), 59-85 (1962). doi:10.2996/kmj/1138844604 · Zbl 0199.19706
[13] Wilde, MM, Recoverability in quantum information theory, Proc. R. Soc. A., 471, 20150338 (2015) · Zbl 1371.81070 · doi:10.1098/rspa.2015.0338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.