×

Saddle singularities in integrable Hamiltonian systems: examples and algorithms. (English) Zbl 1484.37064

Sadovnichiy, Victor A. (ed.) et al., Contemporary approaches and methods in fundamental mathematics and mechanics. Cham: Springer. Underst. Complex Syst., 3-26 (2021).
Summary: Saddle or hyperbolic singularities of Liouville foliations of integrable Hamiltonian systems are discussed. We observe new and classical results on their classification, representation and invariants with respect to topological equivalence depending on number of degrees of freedom. Then criterion of their component-wise stability by A. A. Oshemkov [Sb. Math. 201, No. 8, 1153–1191 (2010; Zbl 1205.37072); translation from Mat. Sb. 201, No. 8, 63–102 (2010)] and its application are reminded. At last, we discuss saddle singularities of famous dynamical and physical systems, particularly problem of realization (modeling) of Liouville foliations and their singularities (A. T. Fomenko billiard conjecture) by integrable billiards. New result is obtained: loop molecules of all saddle-saddle singularities with one equilibrium are modeled by billiard books, i.e. integrable billiards on CW-complexes introduced by A. T. Fomenko and V. V. Vedyushkina [Mosc. Univ. Math. Bull. 74, No. 3, 98–107 (2019; Zbl 1429.37030); translation from Vestn. Mosk. Univ., Ser. I 74, No. 3, 15–25 (2019)].
For the entire collection see [Zbl 1470.53006].

MSC:

37J39 Relations of finite-dimensional Hamiltonian and Lagrangian systems with topology, geometry and differential geometry (symplectic geometry, Poisson geometry, etc.)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37J25 Stability problems for finite-dimensional Hamiltonian and Lagrangian systems
37C83 Dynamical systems with singularities (billiards, etc.)
58K65 Topological invariants on manifolds
58K45 Singularities of vector fields, topological aspects
Full Text: DOI

References:

[1] Fomenko, A.T., Matveev, S.V.: Algorithmical and computer methods in three-manifolds, p. 303. MSU Publishing, Moscow (1991) (In Russian) · Zbl 0748.57005
[2] Oshemkov, A.A.: Morse functions on two-dimensional surfaces. Encoding of singularities, Proc. Steklov Inst. Math. 205, 119-127 (1995) · Zbl 0995.37007
[3] Fomenko, A.T., Matveev, S.V.: Algorithmical and computer methods in three-manifolds. Kluwer Academic Publishers, The Netherlands (1997) (translation) · Zbl 0885.57009
[4] Fokicheva (Vedyushkina), V.V.: A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics. Sb. Math. 206(10), 1463-1507 (2015) · Zbl 1357.37062
[5] Kobtsev, I.F: Geodesic flow of a 2D ellipsoid in an elastic stress field: topological classification of solutions. Moscow Univ. Math. Bull. 73(2), 64-70 (2018) · Zbl 1433.70010
[6] Il’inskaya, N.N.: Geometric analysis of a problem on a harmonic oscillator in an ellipse. Moscow Univ. Math. Bull. 1991(1), 88-92 (1991) · Zbl 0722.70018
[7] Kozlov, V.V.: Some integrable generalizations of the Jacobi problem on geodesics on an ellipsoid. J. Appl. Math. Mech. 59, 1-7 (1995) · Zbl 0883.70006 · doi:10.1016/0021-8928(95)00001-6
[8] Kudryavtseva, E.A.: Liouville integrable generalized billiard flows and Poncelet type theorems. J. Math. Sci. 225(4), 611-638 (2017) · Zbl 1375.37153 · doi:10.1007/s10958-017-3482-5
[9] Fomenko, A.T., Vedyushkina, V.V.: Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards. Izv. RAN. Ser. Mat. 83, 1137-1173 (2019) · Zbl 1436.37068
[10] Waldhausen, F.: Eine Klasse von 3-dimensionalen Mannigfaltighkeiten. II. Invent. Math. 4(2), 88-117 (1967)
[11] Waldhausen, F.: Eine Klasse von 3-dimensionalen Mannigfaltighkeiten. I. Invent. Math. 3(4), 308-333 (1967) · Zbl 0168.44503
[12] Vedyushkina, V.V.: Liouville foliation of billiard book modeling Goryachev-Chaplygin case. Moscow Univ. Math. Bull. 75, 1 (2020) · Zbl 1448.37067 · doi:10.3103/S0027132220010076
[13] Fomenko, A.T., Vedyushkina, V.V.: Topological obstacles to the realizability of integrable Hamiltonian systems by billiards. Dokl. Math. 488, 471-475 (2019) · Zbl 1439.37056
[14] Birkhoff, G.D.: Dynamical systems. American Mathematical Society Colloquium Publications, vol. 9. AMS, New York (1927) · JFM 53.0732.01
[15] Ryabov, P.E.: Bifurcation sets in an integrable problem on motion of a rigid body in fluid. Regul. Chaot. Dyn. 4(4), 59-76 (1999) · Zbl 1203.70028 · doi:10.1070/rd1999v004n04ABEH000132
[16] Kharlamov, M.P., Ryabov, P.E., Savushkin, AYu.: Topological Atlas of the Kowalevski-Sokolov top. Regul. Chaotic Dyn. 21(1), 24-65 (2016) · Zbl 1398.70014 · doi:10.1134/S1560354716010032
[17] Ryabov, P.E.: Bifurcations of first integrals in the Sokolov case. Theor. Math. Phys. 134, 181-197 (2003) · Zbl 1178.37052 · doi:10.1023/A:1022224019967
[18] Oshemkov, A.A.: Fomenko invariants for the main integrable cases of rigid body motion equations. AMS 4, 67-146 (1991) · Zbl 0745.58028
[19] Kozlov, I.K.: The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4). Sb. Math. 205(4), 532-572 (2014) · Zbl 1305.37031 · doi:10.1070/SM2014v205n04ABEH004387
[20] Kharlamov, M.P.: Topological analysis of classical integrable systems in the dynamics of the rigid body. Soviet Math. Dokl. 28(3), 802-805 (1983) · Zbl 0561.58021
[21] Kharlamov, M.P.: Bifurcation of common levels of first integrals of the Kovalevskaya problem, J. Appl. Math. Mech. 47(6), 737-743 (1983) · Zbl 0579.70003
[22] Tuzhilin, M.A.: Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series. Moscow Univ. Math. Bull. 71(5), 185-190 (2016) · Zbl 1417.37193
[23] Kibkalo, V.A.: Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(3, 1). Topol. Appl. (2020). https://doi.org/10.1016/j.topol.2019.107028 · Zbl 1439.37061 · doi:10.1016/j.topol.2019.107028
[24] Kibkalo, V.A.: Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(4). Sb. Math. 210(5), 625-662 (2019) · Zbl 1415.37081 · doi:10.1070/SM9120
[25] Kibkalo, V.A.: Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4). Lobachevskii J. Math. 39(9), 1396-1399 (2018) · Zbl 1408.37095 · doi:10.1134/S1995080218090275
[26] Slavina, N.S.: Topological classification of systems of Kovalevskaya-Yehia type. Sb. Math. 205(1), 101-155 (2014) · Zbl 1348.37094 · doi:10.1070/SM2014v205n01ABEH004369
[27] Logacheva, N.S.: Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia integrable system. Sb. Math. 203(1), 28-59 (2012) · Zbl 1253.37056 · doi:10.1070/SM2012v203n01ABEH004212
[28] Morozov, P.V.: Calculation of the Fomenko-Zieschang invariants in the Kovalevskaya-Yehia integrable case. Sb. Math. 198(8), 1119-1143 (2007) · Zbl 1133.37023 · doi:10.1070/SM2007v198n08ABEH003876
[29] Morozov, P.V.: The Liouville classification of integrable systems of the Clebsch case. Sb. Math. 193(10), 1507-1533 (2002) · Zbl 1045.70007 · doi:10.1070/SM2002v193n10ABEH000687
[30] Morozov, P.V.: Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff’s equations. Sb. Math. 195(3), 369-412 (2004) · Zbl 1072.37045 · doi:10.1070/SM2004v195n03ABEH000809
[31] Bolsinov, A.V., Richter, P., Fomenko, A.V.: The method of loop molecules and the topology of the Kovalevskaya top. Sb. Math. 191(2), 151-188 (2000) · Zbl 0983.37068 · doi:10.1070/SM2000v191n02ABEH000451
[32] Zung, N.T.: Symplectic topology of integrable Hamiltonian systems. I : Arnold-Liouville with singularities (2001). arXiv:math/0106013 · Zbl 0936.37042
[33] Kudryavtseva, E.A., Nikonov, I.M., Fomenko, A.T.: Maximally symmetric cell decompositions of surfaces and their coverings. Sb. Math. 199(9), 1263-1353 (2008) · Zbl 1163.37018 · doi:10.1070/SM2008v199n09ABEH003962
[34] Fomenko, A.T.: Morse theory of integrable Hamiltonian systems. Soviet Math. Dokl. 33(2), 502-506 (1986) · Zbl 0623.58009
[35] Fomenko, A.T., Zieschang, H.: A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom. Math. USSR-Izv. 36(3), 567-596 (1991) · Zbl 0723.58024 · doi:10.1070/IM1991v036n03ABEH002035
[36] Fomenko, A.T., Zieschang, H.: On typical topological properties of integrable Hamiltonian systems. Math. USSR-Izv. 32(2), 385-412 (1989) · Zbl 0667.58014 · doi:10.1070/IM1989v032n02ABEH000772
[37] Fomenko, A.T.: The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability. Math. USSR-Izv. 29(3), 629-658 (1987) · Zbl 0649.58019 · doi:10.1070/IM1987v029n03ABEH000986
[38] Eliasson, L.H.: Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case. Comm. Math. Helv. 65, 4-35 (1990) · Zbl 0702.58024 · doi:10.1007/BF02566590
[39] Pustovoytov, S.E.: Topological analysis of billiard in elliptic ring in field of potential forces. Fund. Appl. Math. 22, 201-225 (2019) (in Russian) translation: in Journal of Mathematical Sciences
[40] Kobtsev, I.F.: Elliptic billiard in field of potential forces: classification of motions, topological analysis. Sb. Math. 211, 93-120 (in press) · Zbl 1448.37066
[41] Fomenko, A.T., Vedyushkina (Fokicheva), V.V.: Integrable topological billiards and equivalent dynamical systems. Izv. Math. 81(4), 688-733 (2017) · Zbl 1380.37078
[42] Fokicheva, V.V., Fomenko, A.T.: Integrable billiards model important integrable cases of rigid body dynamics. Dokl. Math. 92(3), 682-684 (2015) · Zbl 1335.37040 · doi:10.1134/S1064562415060095
[43] Kharcheva, I.E.: Isoenergy manifold of integrable billiard books, Moscow University Mathematics Bulletin (in press) · Zbl 1473.37070
[44] Fomenko, A.T., Vediushkina, V.V.: Billiards and integrability in geometry and physics. New scope and new potential, Moscow Univ. Math. Bull. 74(3), 98-107 (2019) · Zbl 1429.37030
[45] Vediushkina, V.V., Kharcheva, I.S.: Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems. Sb. Math. 209(12), 1690-1727 (2018) · Zbl 1408.37098 · doi:10.1070/SM9039
[46] Oshemkov, A.A.: Saddle singularities of complexity 1 of integrable Hamiltonian systems. Moscow Univ. Math. Bull. 66(2), 60-69 (2011) · Zbl 1304.37039 · doi:10.3103/S0027132211020021
[47] Oshemkov, A.A., Tuzhilin, M.A.: Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems. Sb. Math. 209(8), 1351-1375 (2018) · Zbl 1408.37096 · doi:10.1070/SM9040
[48] Grabezhnoi, A.V.: Invariants of the Liouville foliation for 4-dimensional singularities of saddle-saddle type. Graduate Thesis, Moscow University, Moscow (2005) (Russian)
[49] Kibkalo, V.A.: Billiards with potential model four-dimensional singularities of integrable systems, Contemporary problems of mathematics and mechanics. In: International scientific conference Contemporary problems of mathematics and mechanics, dedicated to the 80th anniversary of academician V.A. Sadovnichii. Books of abstracts, vol. 2, pp. 563-566, Moscow (2019) (Russian)
[50] Oshemkov, A.A.: Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems. Sb. Math. 201(8), 1153-1191 (2010) · Zbl 1205.37072 · doi:10.1070/SM2010v201n08ABEH004108
[51] Bolsinov, A.V., Oshemkov, A.A.: Singularities of integrable Hamiltonian systems, Topological methods in the theory of integrable systems, pp. 1-67. Cambridge Scientific Publishing, Cambridge (2006) · Zbl 1329.37053
[52] Zung, N.T.: Symplectic topology of integrable Hamiltonian systems. I: Arnold-Liouville with singularities. Compos. Math. 101(2), 179-215 (1996) · Zbl 0936.37042
[53] Matveev, V.S.: Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type, Sb. Math. 187(4), 495-524 (1996) · Zbl 0871.58045
[54] Fomenko, A.T.: The symplectic topology of completely integrable Hamiltonian systems, Russian Math. Surveys 44(1) (265), 181-219 (1989) · Zbl 0694.58012
[55] Duistermaat, J.J.: On global action-angle coordinates. Comm. Pure Appl. Math. 33(6), 687-706 (1980) · Zbl 0439.58014 · doi:10.1002/cpa.3160330602
[56] Bolsinov, A.V., Fomenko A.T.: Integrable Hamiltonian systems. Geometry, Topology, Classification. Chapman & Hall/CRC, Boca Raton, FL (2004) · Zbl 1056.37075
[57] Bolsinov, A.V., Fomenko A.T.: Integrable Hamiltonian systems. Geometry, topology, classification. vol. I, II. Publishing House Udmurtia University, Izhevsk (1999) (in Russian) · Zbl 1053.37518
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.