×

Local invariants of divergence-free webs. (English) Zbl 1509.53014

A divergence-free \(n\)-web is understood as a family \(\mathcal{W}=\{ \mathcal{F}_{1},\dots,\mathcal{F}_{n}\}\) of \(n\) foliations in general position on an \(m\)-dimensional manifold \(M\) endowed with a volume form \(\Omega\). A diffeomorphism \(\varphi :M\to N\) is an equivalence of divergence-free webs \(\{\mathcal{F}_{1},\dots,\mathcal{F}_{n}, \Omega_{M}\}\) on \(M\) and \(\{\mathcal{G}_{1},\dots,\mathcal{G}_{n}, \Omega_{N}\}\) on \(N\) if \(\varphi\) carries the leaves of \(\mathcal{F}_{j}\) onto the leaves of \(\mathcal{G}_{\sigma (j)}\), where \(\sigma\) is a permutation of \(\{ 1, \dots ,n\}\), and satisfies \(\varphi ^{*} \Omega_{N}=\Omega_{M}\). A divergence-free \(n\)-web is said to be locally trivial if it is locally equivalent to the trivial \(n\)-web of \(\mathbb{R}^{m}\).
In the present paper, two local invariants of such a geometric structure are introduced. The first one is related to the curvature of the natural connection associated to the structure. This connection was introduced by S. Tabachnikov [Differ. Geom. Appl. 3, No. 3, 265–284 (1993; Zbl 0789.53019)] for the case of 2-webs in a manifold with a volume form. The second invariant is the nonuniformity tensor of the divergence-free \(n\)-web, which is a symmetric covariant 2-tensor field \(\mathcal{K}\), recalling the curvature of the Chern connection of a 3-web (that measures if a 3-web is hexagonal or not), i.e., it is related to the notion of planar 3-web holonomy, studied many years before by W. Blaschke and G. Bol [Geometrie der Gewebe. Topologische Fragen der Differentialgeometrie. Berlin: Julius Springer (1938; JFM 64.0727.03)]. It is proved that the nonuniformity tensor of the divergence-free \(n\)-web of codimension 1 is the Ricci curvature tensor of the natural connection.
Main results of the paper concern characterizations of local triviality of such a divergence-free \(n\)-web. In particular, it is proved that vanishing of either of those invariants characterizes trivial divergence-free web-germs up to equivalence. The result corresponding to the first invariant generalizes another one obtained in the quoted paper of Tabachnikov for the case \(n=2\).
The paper is deep and it is carefully written. Besides, many examples are shown. The last section is about applications in general relativity.

MSC:

53A60 Differential geometry of webs
53A55 Differential invariants (local theory), geometric objects
53Z05 Applications of differential geometry to physics
57R05 Triangulating
58K50 Normal forms on manifolds

References:

[1] Anciaux, H.; Romon, P., A canonical structure on the tangent bundle of a pseudo- or para-kähler manifold, Monatshefte für Mathematik, 174, 329-355 (2014) · Zbl 1317.32047 · doi:10.1007/s00605-014-0630-6
[2] Andersson, N., Comer, G. L.: Relativistic fluid dynamics: physics for many different scales. Living reviews in relativity 24(3) (2021) · Zbl 1466.76001
[3] Andersson, N.; Hawke, I.; Dyonisopoulou, K.; Comer, GL, Beyond ideal magnetohydrodynamics: from fibration to 3 + 1 foliation, Classic. Quant. Gravity, 34, 12 (2017) · Zbl 1367.83009 · doi:10.1088/1361-6382/aa6b39
[4] Arnowitt, R.; Deser, S.; Misner, C., Republication of the dynamics of general relativity, General Relativ. Gravit., 40, 1997-2027 (2008) · Zbl 1152.83320 · doi:10.1007/s10714-008-0661-1
[5] Bande, G.; Kotschick, D., The geometry of symplectic pairs, Trans. Am. Math. Soc., 358, 4, 1643-1655 (2006) · Zbl 1088.53017 · doi:10.1090/S0002-9947-05-03808-0
[6] Blaschke, W., Bol, G.: Geometrie der Gewebe. Grundlehren der mathematischen Wissenschaften 49. Berlin: J. Springer, (1938) · Zbl 0020.06701
[7] Chern, S. S., Chen, W. H., Lam, K. S.: Lectures on differential geometry. Series on University Mathematics. World Scientific Publishing Co., (2000)
[8] Cruceanu, V.; Fortuny, P.; Gaeda, PM, A survey on paracomplex geometry, Rocky Mount. J. Math., 26, 1, 83-115 (1996) · Zbl 0856.53049 · doi:10.1216/rmjm/1181072105
[9] Etayo, F.; Santamaria, R., The canonical connection of a bi-Lagrangian manifold, J. Phys. A Math. General, 34, 981-987 (2001) · Zbl 0990.53081 · doi:10.1088/0305-4470/34/5/304
[10] Etayo, F.; Santamaría, R.; Trías, UR, The geometry of a bi-Lagrangian manifold, Diff. Geometry Appl., 24, 1, 33-59 (2006) · Zbl 1101.53047 · doi:10.1016/j.difgeo.2005.07.002
[11] Gourgoulhon, E.: 3+1 formalism in general relativity. Bases of Numerical Relativity, vol. 846. Lecture Notes in Physics. Springer, Heidelberg (2012) · Zbl 1254.83001
[12] Hess, H.: Connections on symplectic manifolds and geometric quantization. Differential geometrical methods in mathematical physics. Springer, pp 153-166 (1980) · Zbl 0464.58012
[13] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry (1963), New York: Interscience Publishers, New York · Zbl 0119.37502
[14] LeFloch, PG; Makhlof, H., A geometry-preserving finite volume method for compressible fluids on schwarzschild spacetime, Commun. Comput. Phys., 15, 3, 827-852 (2014) · Zbl 1373.76135 · doi:10.4208/cicp.291212.160913a
[15] Nomizu, K., Sasaki, T.: Affine differential geometry. Geometry of Affine Immersions, vol. 111. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1994) · Zbl 0834.53002
[16] Pereira, J. V., Pirio, L.: An Invitation to Web Geometry. Publicações Matemáticas do IMPA, (2009) · Zbl 1321.53003
[17] Tabachnikov, S., Geometry of Lagrangian and legendrian 2-web, Diff. Geometry Appl., 3, 265-284 (1993) · Zbl 0789.53019 · doi:10.1016/0926-2245(93)90004-K
[18] Tondeur, P., Foliations on Riemannian Manifolds (1988), New York: Springer, Universitext, New York · Zbl 0643.53024 · doi:10.1007/978-1-4613-8780-0
[19] Vaisman, I., Symplectic curvature tensors, Monatschefte für Mathematik, 100, 299-327 (1985) · Zbl 0571.53025 · doi:10.1007/BF01339231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.