×

Contribution of \(n\)-cylinder square-tiled surfaces to Masur-Veech volume of \(\mathcal{H}(2g-2)\). (English) Zbl 1530.30040

Square-tiled surfaces are special kinds of quadrangulations of surfaces. Their asymptotic enumeration is tightly linked with the so-called Masur-Veech volumes of the strata of the moduli space of abelian and quadratic differentials as shown by A. Zorich [in: Rigidity in dynamics and geometry. Berlin: Springer. 459–471 (2002; Zbl 1038.37015)]. This link has been used to deduce many values and properties of the Masur-Veech volumes.
The simplest stratum of the moduli space of abelian differentials is \(\mathcal{H}(2g-2)\) which consists of pairs \((X, \omega)\) where \(X\) is a Riemann surface and \(\omega\) an abelian differential on \(X\) with a single zero of degree \(2g-2\). Their Masur-Veech volumes have been studied from an algebraic geometry perspective in a work of A. Sauvaget [Geom. Funct. Anal. 28, No. 6, 1756–1779 (2018; Zbl 1404.14035)]. In this article, an alternative computation of the Masur-Veech volumes of \(\mathcal{H}(2g-2)\) is provided using square-tiled surface enumeration. The main result shows that a natural refined asymptotic count of square-tiled surfaces in \(\mathcal{H}(2g-2)\) is a one-parameter deformation of the original generating series of A. Sauvaget.
The strategy of the proof follows the initial idea of J. Athreya et al. [Geom. Dedicata 170, 195–217 (2014; Zbl 1290.32012)] and the reviewer et al. [Duke Math. J. 170, No. 12, 2633–2718 (2021; Zbl 1471.14066)]. Namely, square-tiled surfaces are counted with an additional parameter taking into account the combinatorics of their cylinders. That required the author to develop a complete framework for the asymptotic enumeration of metric unicellular bipartite maps (i.e., metric graphs embedded in surface with a proper 2-coloring of its vertices and whose complement is homeomorphic to a disk). One important tool turns out to be the so-called Chapuy-Féray-Fusy bijection between unicellular maps and decorated trees [G. Chapuy et al., J. Comb. Theory, Ser. A 120, No. 8, 2064–2092 (2013; Zbl 1278.05081)].

MSC:

30F30 Differentials on Riemann surfaces
30F60 Teichmüller theory for Riemann surfaces
05A16 Asymptotic enumeration
05E14 Combinatorial aspects of algebraic geometry
57M50 General geometric structures on low-dimensional manifolds

References:

[1] Athreya, J. S.; Eskin, A.; Zorich, A., Counting generalized Jenkins-Strebel differentials, Geom. Dedic., 170, 195-217 (2014) · Zbl 1290.32012 · doi:10.1007/s10711-013-9877-7
[2] Barvinok, A., Integer Points in Polyhedra (2008), Zürich: European Mathematical Society (EMS), Zürich · Zbl 1154.52009 · doi:10.4171/052
[3] Chapuy, G.; Féray, V.; Fusy, É., A simple model of trees for unicellular maps, J. Comb. Theory, Ser. A, 120, 8, 2064-2092 (2013) · Zbl 1278.05081 · doi:10.1016/j.jcta.2013.08.003
[4] Chapuy, G., A new combinatorial identity for unicellular maps, via a direct bijective approach, Adv. Appl. Math., 47, 4, 874-893 (2011) · Zbl 1234.05037 · doi:10.1016/j.aam.2011.04.004
[5] Chen, D.; Möller, M.; Sauvaget, A.; Zagier, D., Masur-Veech volumes and intersection theory on moduli spaces of Abelian differentials, Invent. Math., 222, 1, 283-373 (2020) · Zbl 1446.14015 · doi:10.1007/s00222-020-00969-4
[6] Chen, D.; Möller, M.; Zagier, D., Quasimodularity and large genus limits of Siegel-Veech constants, J. Am. Math. Soc., 31, 4, 1059-1163 (2018) · Zbl 1404.32025 · doi:10.1090/jams/900
[7] Delecroix, V.; Goujard, É.; Zograf, P.; Zorich, A.; Engel, P., Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes, Some Aspects of the Theory of Dynamical Systems: A Tribute to Jean-Christophe Yoccoz. Volume I, 223-274 (2020), Paris: Société Mathématique de France (SMF), Paris · Zbl 1464.05004
[8] Delecroix, V.; Goujard, É.; Zograf, P.; Zorich, A., Masur-Veech volumes, frequencies of simple closed geodesics, and intersection numbers of moduli spaces of curves, Duke Math. J., 170, 12, 2633-2718 (2021) · Zbl 1471.14066 · doi:10.1215/00127094-2021-0054
[9] Delecroix, V.; Goujard, É.; Zograf, P.; Zorich, A., Large genus asymptotic geometry of random square-tiled surfaces and of random multicurves, Invent. Math., 230, 1, 123-224 (2022) · Zbl 1498.14074 · doi:10.1007/s00222-022-01123-y
[10] Eskin, A.; Okounkov, A., Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., 145, 1, 59-103 (2001) · Zbl 1019.32014 · doi:10.1007/s002220100142
[11] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1, 1-23 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[12] Lando, S. K.; Zvonkin, A. K., Graphs on Surfaces and Their Applications. Appendix by Don B. Zagier (2004), Berlin: Springer, Berlin · Zbl 1040.05001 · doi:10.1007/978-3-540-38361-1
[13] Masur, H., Interval exchange transformations and measured foliations, Ann. Math. (2), 115, 169-200 (1982) · Zbl 0497.28012 · doi:10.2307/1971341
[14] Masur, H.; Tabachnikov, S., Rational billiards and flat structures, Handbook of Dynamical Systems. Volume 1A, 1015-1089 (2002), Amsterdam: North-Holland, Amsterdam · Zbl 1057.37034 · doi:10.1016/S1874-575X(02)80015-7
[15] Norbury, P., Counting lattice points in the moduli space of curves, Math. Res. Lett., 17, 3, 467-481 (2010) · Zbl 1225.32023 · doi:10.4310/MRL.2010.v17.n3.a7
[16] Okounkov, A.; Pandharipande, R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. Math. (2), 163, 2, 517-560 (2006) · Zbl 1105.14076 · doi:10.4007/annals.2006.163.517
[17] Sauvaget, A., Volumes and Siegel-Veech constants of \({\mathcal{H}}(2g - 2)\) and Hodge integrals, Geom. Funct. Anal., 28, 6, 1756-1779 (2018) · Zbl 1404.14035 · doi:10.1007/s00039-018-0468-5
[18] Shadrin, S.; Spitz, L.; Zvonkine, D., On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc. (2), 86, 2, 407-432 (2012) · Zbl 1252.05218 · doi:10.1112/jlms/jds010
[19] Veech, W. A., Gauss measures for transformations on the space of interval exchange maps, Ann. Math. (2), 115, 201-242 (1982) · Zbl 0486.28014 · doi:10.2307/1971391
[20] Witten, E., Two-dimensional gravity and intersection theory on moduli space, Surveys in Differential Geometry. Vol. I: Proceedings of the Conference on Geometry and Topology, held at Harvard University, Cambridge, MA, USA, April 27-29, 1990, 243-310 (1991), Providence: Am. Math. Soc., Providence · Zbl 0757.53049
[21] Wright, A., Translation surfaces and their orbit closures: an introduction for a broad audience, EMS Surv. Math. Sci., 2, 1, 63-108 (2015) · Zbl 1372.37090 · doi:10.4171/EMSS/9
[22] Wright, A., From rational billiards to dynamics on moduli spaces, Bull. Am. Math. Soc. (N.S.), 53, 1, 41-56 (2016) · Zbl 1353.37076 · doi:10.1090/bull/1513
[23] Zorich, A., Square tiled surfaces and Teichmüller volumes of the moduli spaces of Abelian differentials, Rigidity in Dynamics and Geometry. Contributions from the Programme Ergodic Theory, Geometric Rigidity and Number Theory, 459-471 (2002), Berlin: Springer, Berlin · Zbl 1038.37015
[24] Zorich, A., Flat surfaces, Frontiers in Number Theory, Physics, and Geometry I. On Random Matrices, Zeta Functions, and Dynamical Systems, 437-583 (2006), Berlin: Springer, Berlin · Zbl 1129.32012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.